Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems were characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust PN regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a section (trip-10) novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of trip-10 tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Sound - Design for Motorcycles Influence of Different Parameters on the Sound

2006-11-13
2006-32-0084
Beside performance, handling and styling the sound characteristic of a motorcycle is a very important feature for the acceptance of the product by the customers and therefore the commercial success of a new product. Creating a special brand sound becomes more and more important to create a product that can be easily distinguished from competitor products and is therefore considered to be something special. On the other hand the legal limits in terms of pass - by noise allow for a very little margin for the creation of a special sound. During the product sound design phase the different perceptions of the rider wearing a helmet and pedestrians have to be considered. In passenger cars sound design has been known for a long time and the creation of a special sound for the driver inside the passenger compartment can be achieved with little influence on the exterior noise and therefore on the noise which is limited by legislation.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

Simulation of Exhaust Gas Aftertreatment Systems - Thermal Behavior During Different Operating Conditions

2008-04-14
2008-01-0865
The introduction of more stringent standards for engine emissions requires continuous improvement of exhaust gas aftertreatment systems. Modern systems require a combined design and application of different aftertreatment devices. Computer simulation helps to investigate the complexity of different system layouts. This study presents an overall aftertreatment modeling framework comprising dedicated models for pipes, oxidation catalysts, wall flow particulate filters and selective catalytic converters. The model equations of all components are discussed. The individual behavior of all components is compared to experimental data. With these well calibrated models a simulation study on a DOC-DPF-SCR exhaust system is performed. The impact of pipe wall insulation on the overall NOx conversion performance is investigated during four different engine operating conditions taken from a heavy-duty drive cycle.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Pass-By Noise Prediction for Trucks Based on Powertrain Test-Cell Measurements

2001-04-30
2001-01-1564
The paper outlines and discusses the possibilities of a new instrumentation tool for the analysis of engine and gearbox noise radiation and the prediction of pass-by noise from powertrain test cell measurements. Based on a 32 channel data acquisition board, the system is intended to be quick and easy to apply in order to support engineers during their daily work in the test cell. The pass-by prediction is a purely experimental approach with test cell recordings being weighted by measured transfer functions (from the powertrain compartment to the pass-by point).
Technical Paper

Production Feasible DME Technology for Direct Injection CI Engines

2001-05-07
2001-01-2015
DiMethyl Ether (DME) has been shown to be a very attractive fuel for low emission direct injection compression ignition (DICI) engines. It combines the advantages of the high efficiencies of diesel cycle engines with soot free combustion. However, its greatest drawback is the need to develop new fuel injection and handling systems. Previous approaches have been common rail type injection systems which have shown great potential in reducing harmful exhaust emissions and achieving good engine performance and efficiency due to good control of both the fuel injection characteristics and temperature. The concept also has proven benefits with respect to convenient and safe fuel handling. The logical evolution of this concept simplifies the fuel system and avoids special components for DME handling such as high pressure rail pumps while retaining all the benefits of the common rail principle.
Technical Paper

New Physical and Chemical Models for the CFD Simulation of Exhaust Gas Lines: A Generic Approach

2002-03-04
2002-01-0066
In the near future the effort on the development of exhaust gas treatment systems must be increased to meet the stringent emission requirements. If the relevant physical and chemical models are available, the numerical simulation is an important tool for the design of these systems. This work presents a CFD model that allows to cover the full range of applications in this area. After a detailed presentation of the theoretical background and the modeling strategies results for the simulation of a close-coupled catalyst are shown. The presented model is also applied to the oxidation of nitrogen oxides, to a diesel particle filter and a fuel-cell reformer catalyst.
Technical Paper

Can the Technology for Heavy Duty Diesel Engines be Common for Future Emission Regulations in USA, Japan and Europe?

2003-03-03
2003-01-0344
Exhaust emission legislation world-wide have a common trend towards very low limits, measured for compliance in transient cycles specific for the United States, Japan and Europe. The emission development strategy is focussing on lowest engine-out emissions to require a minimum of exhaust gas aftertreatment. The base engine concept is described and test results, complying with Euro 4, are shown. The emission reduction development for future regulations requires exhaust gas aftertreatment, test results are shown for US 2007, JNLTR and Euro 5. With exhaust gas aftertreatment, discussed in the appendix, the engine development is faced with a big challenge to ensure the minimum exhaust gas temperature required for their proper function.
Technical Paper

Simulation of Engine's Structure Borne Noise Excitation due to the Timing Chain Drive

2002-03-04
2002-01-0451
Due to durability and lifetime requirements, the timing drive systems of modern passenger car engines are often equipped with chain drives. Chain driven systems are usually more critical in view of NVH compared to synchronous belt-drives. Mainly the polygonal effect and the related phenomena, like impacts caused by the meshing between the chain-links and impacts in the engagement/disengagement regions of guides and sprockets, lead to an increased excitation of the engine's structure. Since the polygonal effect occurs with the meshing frequency, the excited vibrations are basically narrow banded and can finally be recognized as an annoying whine-noise. This paper describes the modeling (MBS) of the entire timing-drive system containing a bushing-chain-drive, camshafts and all connected single valve trains. The investigations carried out are mainly focused on the primary dynamics of the chain drive and the forces which are transferred to the engine's structure.
Technical Paper

Powertrain Solutions for Electrified Trucks and Buses

2017-05-10
2017-01-1937
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

2011-09-11
2011-24-0206
Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
X