Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Prediction of Combustion Delay and -Duration of Homogeneous Charge Gasoline Engines based on In-Cylinder Flow Simulation

2009-06-15
2009-01-1796
In this paper a new approach is presented to evaluate the combustion behaviour of homogeneous gasoline engines by predicting burn delay and -duration in a way which can be obtained under the time constraints of the development process. This is accomplished by means of pure in-cylinder flow simulations without a classical combustion model. The burn delay model is based on the local distribution of the turbulent flow near the spark plug. It features also a methodology to compare different designs regarding combustion stability. The correlation for burn duration uses a turbulent characteristic number that is obtained from the turbulent flow in the combustion chamber together with a model for the turbulent burning velocity. The results show good agreement with the combustion process of the analyzed engines.
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

2010-04-12
2010-01-0591
Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

A New CFD Approach for Assessment of Swirl Flow Pattern in HSDI Diesel Engines

2010-09-28
2010-32-0037
The fulfillment of the aggravated demands on future small-size High-Speed Direct Injection (HSDI) Diesel engines requires next to the optimization of the injection system and the combustion chamber also the generation of an optimal in-cylinder swirl charge motion. To evaluate different port concepts for modern HSDI Diesel engines, usually quantities as the in-cylinder swirl ratio and the flow coefficient are determined, which are measured on a steady-state flow test bench. It has been shown that different valve lift strategies nominally lead to similar swirl levels. However, significant differences in combustion behavior and engine-out emissions give rise to the assumption that local differences in the in-cylinder flow structure caused by different valve lift strategies have noticeable impact. In this study an additional criterion, the homogeneity of the swirl flow, is introduced and a new approach for a quantitative assessment of swirl flow pattern is presented.
Technical Paper

LOTUS: A Co-operation for Low Temperature Urea-Based Selective Catalytic Reduction of NOx

2004-03-08
2004-01-1294
The European research co-operation Lotus is presented. The main objectives of the project were i) to show the potential for a urea-based SCR system to comply with the EU standard of years 2005 and 2008 for heavy-duty Diesel engines for different driving conditions with optimal fuel consumption, ii) to reach 95 % conversion of NOx at steady state at full load on a Euro III engine, iii) to reach 75 % NOx reduction for exhaust temperatures between 200-300°C, and 85 % average NOx reduction between 200-500°C. The energy content of the consumed urea should not exceed 1.0 %, calculated as specific fuel consumption. These targets were met in May 2003 and the Lotus SCR system fulfilled the Euro V NOx legislative objectives for year 2008.
Technical Paper

Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine

2011-04-12
2011-01-1284
The application of technologies such as direct injection, turbo charging and variable valve timing has caused a significant evolution of the gasoline engine with positive effects on fuel consumption and emissions. The current developments are primarily focused on the realization of improved full load characteristics and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbo charging and high specific power. The requirements of high specific power in a relatively small cylinder displacement and a wide range of DI injection specifications lead to competing development targets and to a high number of degrees of freedom during engine layout and optimization. One of the major targets is to assess the stability of the combustion system in the early development phase.
X