Refine Your Search

Topic

Author

Search Results

Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Technical Paper

Impact of Mode Shapes on Experimental Loss Factor Estimation in Automotive Joints

2021-08-31
2021-01-1110
This paper presents the experimental work carried out on single-lap joints fastened together with bolts and nuts to investigate the contribution of mode shapes, and the effect that bolt sizes has in dissipating energy in built-up structures. Five different bolt sizes are chosen to assemble five single-bolted single-lap joints using aluminum plates. An analogous monolithic solid piece carved from the same aluminum material is used to determine the material damping and compare it against the damping from bolted joints. The dynamic response of all structures is captured under free-free boundary conditions, and the common modes are analyzed to understand the contribution and primary source of damping in the same range of the sampling frequency.
Technical Paper

Co-Simulation Methods for Holistic Vehicle Design: A Comparison

2020-04-14
2020-01-1017
Vehicle development involves the design and integration of subsystems of different domains to meet performance, efficiency, and emissions targets set during the initial developmental stages. Before a physical prototype of a vehicle or vehicle powertrain is tested, engineers build and test virtual prototypes of the design(s) on multiple stages throughout the development cycle. In addition, controllers and physical prototypes of subsystems are tested under simulated signals before a physical prototype of the vehicle is available. Different departments within an automotive company tend to use different modelling and simulation tools specific to the needs of their specific engineering discipline. While this makes sense considering the development of the said system, subsystem, or component, modern holistic vehicle engineering requires the constituent parts to operate in synergy with one-another in order to ensure vehicle-level optimal performance.
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Journal Article

A Drag Coefficient for Test Cycle Application

2018-04-03
2018-01-0742
The drag coefficient at zero yaw angle is the single parameter usually used to define the aerodynamic drag characteristics of a passenger car. However, this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of nonzero yaw angles and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient (CDW) is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

2016-04-05
2016-01-1601
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
Journal Article

Efficiency and Durability Predictions of High Performance Racing Transmissions

2016-06-15
2016-01-1852
Efficiency and durability are key areas of research and development in modern racing drivetrains. Stringent regulations necessitate the need for components capable of operating under highly loaded conditions whilst being efficient and reliable. Downsizing, increasing the power-to-weight ratio and modification of gear teeth geometry to reduce friction are some of the actions undertaken to achieve these objectives. These approaches can however result in reduced structural integrity and component durability. Achieving a balance between system reliability and optimal efficiency requires detailed integrated multidisciplinary analyses, with the consideration of system dynamics, contact mechanics/tribology and stress analysis/structural integrity. This paper presents an analytical model to predict quasi-static contact power losses in lubricated spur gear sets operating under the Elastohydrodynamic regime of lubrication.
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Technical Paper

Streamlined Tails - The Effects of Truncation on Aerodynamic Drag

2020-04-14
2020-01-0673
Significant aerodynamic drag reduction is obtained on a bluff body by tapering the rear body. In the 1930’s it was found that a practical low drag car body could be achieved by cutting off the tail of a streamlined shape. The rear end of a car with a truncated tail is commonly referred to as a Kamm back. It has often been interpreted as implying that the drag of this type of body is almost the same as that for a fully streamlined shape. From a review of the limited research into truncated streamlined tails it is shown in this paper that, while true for some near axisymmetric bodies, it is not the case for many more car-like shapes. For these shapes the drag reduction from an elongated tail varies almost linearly with the reduction in cross section area. A CFD simulation to determine the drag reduction from a truncated streamlined tail of variable length on the simple Windsor Body is shown by way of confirmation.
Journal Article

A Modal-Based Derivation of Transient Pressure Distribution Along the Tyre-Road Contact

2009-04-20
2009-01-0457
The two-dimensional, frictional tyre-road contact interaction is investigated. A transient contact algorithm is developed, consisting of an analytical belt model, a non linear sidewall structure and a discretized viscoelastic tread foundation. The relationship between the magnitude/shape of the predicted two-dimensional pressure distribution and the corresponding belt deformation is identified. The effect of vertical load and the role of sidewall non linearity are highlighted. The modal expansion/reduction method is proposed for the increase of the computational efficiency and the effect of the degree of reduction on the simulation accuracy is presented. The qualitative results are physically explained through the participation of certain modes in the equilibrium solution, offering directions for the application of the modal reduction method in shear force oriented tyre models.
Technical Paper

Towards an Open Source Model for Engine Control Systems

2008-06-23
2008-01-1711
Traditionally, university research in engine technology has been focused on fundamental engine phenomena. Increasingly however, research topics are developing in the form of systems issues. Examples include air and exhaust gas recirculation (EGR) management, after-treatment systems, engine cooling, hybrid systems and energy recovery. This trend leads to the need for engine research to be conducted using currently available products and components that are re-configured or incrementally improved to support a particular research investigation. A production engine will include an electronic control unit (ECU) that must be understood and utilised or simply removed and circumvented. In general the intellectual property (IP) limitations places on ECUs by their suppliers mean that they cannot be used. The supplier of the ECU is usually unable to reveal any detail of the implementation. As a consequence any research using production hardware is seriously disadvantaged from the beginning.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1525
Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

A Process Definition Environment for Component Based Manufacturing Machine Control Systems Developed Under the Foresight Vehicle Programme

2002-03-04
2002-01-0468
The COMponent Based Paradigm for AGile Automation (COMPAG) provides a component-based solution to engine production-line machine control systems. The traditional PLC system is replaced with a distributed control network containing intelligent nodes comprising locally controlled actuators and sensors. The Process Definition Environment provides support for the specification, configuration, and maintenance of the machine control application and facilitates both the initial design and maintenance stages of the lifecycle by describing the control logic as a set of consistent timing and state transition diagrams commonly used in the initial design stages.
Technical Paper

Human Factors Issues in the Application of a Novel Process Description Environment for Machine Design and Control Developed under the Foresight Vehicle Programme

2002-03-04
2002-01-0466
In the globalization of the automotive businesses, manufacturing companies and their suppliers are forced to distribute the various lifecycle phases in different geographical locations. Misunderstandings arising from the variety of personnel involved, each with different requirements, backgrounds, roles, cultures and skills for example can result in increased cost and development time. To enable collaborating companies to have a common platform for interaction, the COMPANION project at Loughborough University has been undertaken to develop a common model-based environment for manufacturing automotive engines. Through the use of this environment, the stakeholders will be able to “visualize” consistently the evolution of automated systems at every lifecycle stage i.e. requirements definition, specification, design, analysis, build, evaluation, maintenance, diagnostics and recycle.
Technical Paper

The Potential of Thermoelectric Generator in Parallel Hybrid Vehicle Applications

2017-03-28
2017-01-0189
This paper reports on an investigation into the potential for a thermoelectric generator (TEG) to improve the fuel economy of a mild hybrid vehicle. A simulation model of a parallel hybrid vehicle equipped with a TEG in the exhaust system is presented. This model is made up by three sub-models: a parallel hybrid vehicle model, an exhaust model and a TEG model. The model is based on a quasi-static approach, which runs a fast and simple estimation of the fuel consumption and CO2 emissions. The model is validated against both experimental and published data. Using this model, the annual fuel saving, CO2 reduction and net present value (NPV) of the TEG’s life time fuel saving are all investigated. The model is also used as a flexible tool for analysis of the sensitivity of vehicle fuel consumption to the TEG design parameters. The analysis results give an effective basis for optimization of the TEG design.
Technical Paper

Improved Thermoelectric Generator Performance Using High Temperature Thermoelectric Materials

2017-03-28
2017-01-0121
Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit.
Technical Paper

MIMO (Multiple-Input-Multiple-Output) Control for Optimising the Future Gasoline Powertrain - A Survey

2017-03-28
2017-01-0600
This paper surveys publications on automotive powertrain control, relating to modern GTDI (Gasoline Turbocharged Direct Injection) engines. The requirements for gasoline engines are optimising the airpath but future legislation suggests not only a finely controlled airpath but also some level of electrification. Fundamentals of controls modelling are revisited and advancements are highlighted. In particular, a modern GTDI airpath is presented based on basic building blocks (volumes, turbocharger, throttle, valves and variable cam timing or VCT) with an example of a system interaction, based on boost pressure and lambda control. Further, an advanced airpath could be considered with applications to downsizing and fuel economy. A further electrification step is reviewed which involves interactions with the airpath and requires a robust energy management strategy. Examples are taken of energy recovery and e-machine placement.
Technical Paper

A Parallel Hybrid Drive System for Small Vehicles: Architecture and Control Systems

2016-04-05
2016-01-1170
The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
X