Refine Your Search

Topic

Search Results

Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Journal Article

A Scale Adaptive Filtering Technique for Turbulence Modeling of Unsteady Flows in IC Engines

2015-04-14
2015-01-0395
Swirling flows are very dominant in applied technical problems, especially in IC engines, and their prediction requires rather sophisticated modeling. An adaptive low-pass filtering procedure for the modeled turbulent length and time scales is derived and applied to Menter' original k - ω SST turbulence model. The modeled length and time scales are compared to what can potentially be resolved by the computational grid and time step. If the modeled scales are larger than the resolvable scales, the resolvable scales will replace the modeled scales in the formulation of the eddy viscosity; therefore, the filtering technique helps the turbulence model to adapt in accordance with the mesh resolution and the scales to capture.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Journal Article

A 1D/Quasi-3D Coupled Model for the Simulation of I.C. Engines: Development and Application of an Automatic Cell-Network Generator

2017-03-28
2017-01-0514
Nowadays quasi-3D approaches are included in many commercial and research 1D numerical codes, in order to increase their simulation accuracy in presence of complex shape 3D volumes, e.g. plenums and silencers. In particular, these are regarded as valuable approaches for application during the design phase of an engine, for their capability of predicting non-planar waves motion and, on the other hand, for their low requirements in terms of computational runtime. However, the generation of a high-quality quasi-3D computational grid is not always straightforward, especially in case of complex elements, and can be a time-consuming operation, making the quasi-3D tool a less attractive option. In this work, a quasi-3D module has been implemented on the basis of the open-source CFD code OpenFOAM and coupled with the 1D code GASDYN.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Journal Article

Development of an ESP Control Logic Based on Force Measurements Provided by Smart Tires

2013-04-08
2013-01-0416
The present paper investigates possible enhancement of ESP performance associated with the use of smart tires. In particular a novel control logic based on a direct feedback on the longitudinal forces developed by the four tires is considered. The control logic was developed using a simulation tool including a 14 dofs vehicle model and a smart tires emulator. Performance of the control strategy was evaluated in a series of handling maneuvers. The same maneuvers were performed on a HiL test bench interfacing the same vehicle model with a production ESP ECU. Results of the two logics were analyzed and compared.
Journal Article

Modeling Cycle-to-Cycle Variations in 0-D/1-D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle-Resolved Data

2013-04-08
2013-01-1314
The presented paper deals with a methodology to model cycle-to-cycle variations (CCV) in 0-D/1-D simulation tools. This is achieved by introducing perturbations of combustion model parameters. To enable that, crank angle resolved data of individual cycles (pressure traces) have to be available for a reasonable number of engine cycles. Either experimental data or 3-D CFD results can be applied. In the presented work, experimental data of a single-cylinder research engine were considered while predicted LES 3-D CFD results will be tested in the future. Different engine operating points were selected - both stable ones (low CCV) and unstable ones (high CCV). The proposed methodology consists of two major steps. First, individual cycle data have to be matched with the 0-D/1-D model, i.e., combustion model parameters are varied to achieve the best possible match of pressure traces - an automated optimization approach is applied to achieve that.
Journal Article

An Experimental Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port

2013-04-08
2013-01-0561
The flow field resulting from injecting a gas jet into a crossflow confined in a narrow square duct has been studied under steady regime using schlieren imaging and laser Doppler velocimetry (LDV). This transparent duct is intended to simulate the intake port of an internal combustion engine fueled by gaseous mixture, and the jet is issued from a round nozzle. The schlieren images show that the relative small size of the duct would confine the development of the transverse jet, and the interaction among jet and sidewalls strongly influences the mixing process between jet and crossflow. The mean velocity and turbulence fields have been studied in detail through LDV measurements, at both center plane and several cross sections. The well-known flow feature formed by a counter rotating vortex pair (CVP) has been observed, which starts to appear at the jet exit section and persists far downstream contributing to enhancing mixing process.
Technical Paper

Test-Model Correlation in Spacecraft Thermal Control by Means of MonteCarlo Techniques

2007-07-09
2007-01-3120
In the paper some methods are presented, with the corresponding practical examples, related to MonteCarlo (MC) techniques for thermal model/test correlation purposes. The MonteCarlo techniques applied to model correlation are intended to be used as an alternative to empirical ‘manual’ correlation techniques, gradients methods, matrix methods based on least square fit minimization. First of all, Design Of Experiments (DoE) tools are used to determine the model response to uncertain parameters and the confidence level of such a response. A sensitivity map is built, allowing the design of the test to maximize the response of the system to the uncertain parameters. Techniques derived from the extreme statistics are used to extrapolate data beyond test limits, with a sufficient confidence in the queue behaviour.
Technical Paper

An Innovative 4WD Controlled Powertrain for High Performance Vehicle

2007-04-16
2007-01-0926
The potentialities shown by controlled differentials is making the automotive industry to explore this field. While VDC systems can only guarantee a safe behaviour at limit, a controlled differential can also increase the handling performance. The system derives from a RWD driveline with a semi-active differential, to which has been added a controlled wet clutch that directly connects the engine to the front axle. This device allows to distribute the drive torque between the two axles. It can be easily understood that in this device the torque distribution doesn't depend only from the central clutch action, but also from the engaged gear. Because of this particular layout this system can't work in the whole gear because thermal problems due to kinematical reasons. So the central clutch controller has to consider the gear position too.
Technical Paper

Multi-body Dynamics Based Gear Mesh Models for Prediction of Gear Dynamics and Transmission Error

2010-04-12
2010-01-0897
Gear trains applied to automotive transmissions and combustion engines are potential excitation sources of undesired whine noise. Consequently, the prediction of gear whine issues in an early stage of the product development process is strongly requested. Beside the actual excitation mechanism which is closely related to the gear's transmission error, the vibratory behavior (e.g. resonances) of other affected components like shafts, bearings and housing plays an important role in terms of structure borne noise transfer. The paper deals with gear contact models of different degree of detail, which are embedded in a multi-body dynamics (MBD) environment. Since gear meshing frequency and their harmonics may easily reach up to 5 kHz or even 10 kHz, applied gear contact models must be highly efficient with respect to calculation performance. Otherwise, major requirements of the development process in terms of process time can not be satisfied as is the case with FEA-based contact models.
Technical Paper

New Kinematic Design Methodology and Dynamic Simulation of Continuously Variable Valve Lift (CVVL) System

2010-04-12
2010-01-1202
Mechanical variable valve systems are being increasingly used for modern combustion engines. It is typical for such systems that the cam and valve are connected via intermediate levers. Different maximum valve lifts and duration can be achieved with the same cam profile. The intermediate levers increase the system inertia and reduce the overall stiffness. Such systems offer more flexibility, but it is more complex to create optimal design compared to the conventional systems. In this paper a new kinematic design methodology for a CVVL (Continuously Variable Valve Lift) system is presented. Additionally, dynamic analysis of the valve train system is performed. The investigated valve train is completely developed and patented by OEM. The main characteristic of the CVVL system is a set of intermediate levers between the cam and the finger follower like ( 1 , 2 ). One cam drives two intake valves over a set of levers.
Technical Paper

Influence of Low-Frequency Powertrain-Vibrations on Driveability-Assessments

2010-06-09
2010-01-1419
Cost- and time-efficient vehicle development is increasingly depending on the usage of adequate software tools to enhance effectiveness. The aim is a continuous integration of simulation tools and test environments within the vehicle development process in order to save time and costs. This paper introduces a procedure to reveal the cause of low-frequency powertrain vibrations and the influences on the dynamic behavior of a vehicle on a roller test bench. The affected longitudinal acceleration signal is an arbitrative criterion for the driveability assessment with AVL-DRIVE™, a well-known driveability analysis and development tool for the objective assessment concerning NVH and driveability aspects of full vehicles. These experimental studies are embedded into an approach, which describes the functional assembly of three applied test environments "road," "roller test bench" and "simulation" with according tools in order to facilitate an integrated driveability development process.
Technical Paper

A Software Tool for Noise Quality and Brand Sound Development

2001-04-30
2001-01-1573
For noise quality and brand sound design of passenger cars a unique software tool is currently used by our clients world-wide to evaluate and optimise the interior noise quality and brand sound aspects of passenger cars on an objective basis. The software tools AVL-VOICE and AVL-COMFORT are designed for the objective analysis of interior noise quality, for benchmarking, for the definition of noise quality targets and most important for effective vehicle sound engineering. With this tool, the target orientated implementation of the required interior noise quality or brand sound by predictable hardware modifications into passenger cars - for tailor made joy of driving - becomes feasible. The use of this tools is drastically reducing vehicle evaluation time and sound engineering effort when compared with traditional jury subjective evaluation methods and standard acoustic NVH optimisation procedures.
Technical Paper

Vehicle Sound Engineering by Modifying Intake / Exhaust Orifice Noise Using Simulation Software

2003-05-05
2003-01-1686
Apart of other aspects, the interior sound of a passenger car brand has to meet customer expectations. For optimizing the sound of a passenger car, target sounds have first to be established via the operating range of the vehicle. For an effective sound engineering approach an objective description and evaluation of vehicle interior sound is beneficial. Such an objective description guarantees the effective and reproducible implementation of the required brand sound in the vehicle development process. In such a process it is necessary to reduce on the one hand annoying undesired noise aspects and to create on the other hand the relevant and necessary noise parameters to meet the target sounds head on.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Gear Whine Noise Investigation of a Bus Rear Axle - Todays Possibilities and Outlook

2017-06-05
2017-01-1820
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
Technical Paper

Nozzle Flow and Cavitation Modeling with Coupled 1D-3D AVL Software Tools

2011-09-11
2011-24-0006
The paper is devoted to the coupled 1D-3D modeling technology of injector flow and cavitation in diesel injections systems. The technology is based on the 1D simulation of the injector with the AVL software BOOST-HYDSIM and 3D modeling of the nozzle flow with AVL FIRE. The nozzle mesh with spray holes and certain part of the nozzle chamber is created with the FIRE preprocessor. The border between the 1D and 3D simulation regions can be chosen inside the nozzle chamber at any position along the needle shaft. Actual coupling version of both software tools considers only one-dimensional (longitudinal) needle motion. Forthcoming version already includes the two-dimensional motion of the needle. Furthermore, special models for the needle tip contact with the nozzle seat and needle guide contact with the nozzle wall are developed in HYDSIM. The co-simulation technology is applied for different common rail injectors in several projects.
Technical Paper

Lubrication Testing Methodology for Vehicle Class and Usage Based Validation

2022-08-30
2022-01-1101
System lubrication in automotive powertrains is a growing topic for development engineers. Hybrid and pure combustion system complexity increases in search of improved efficiency and better control strategy, increasing the number of components with lubrication demand and the interplay between them, while fully electric systems drive for higher input speeds to increase e-motor efficiency, increasing bearing and gear feed rate demands. Added to this, many e-axle and hybrid systems are in development with a shared medium and circuit for e-motor cooling and transmission lubrication. Through all this, the lubricant forms a common thread and is a fundamental component in the system, but no standardized tests can provide a suitable methodology to investigate the adequate lubrication of components at powertrain level, to support the final planned vehicle usage.
X