Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Technical Paper

Fast Charging at Cold Conditions—Model-Based Control Enabled by Multi-Scale Multi-Domain Plant Model

2022-03-29
2022-01-0702
Fast charging of batteries at cold conditions faces the challenge of promoting undesired cell degradation phenomena such as lithium plating. The occurrence of lithium plating is strongly related to local surface potentials and temperatures involving the scales of the electrode surface, the unit cell and the entire module or pack. A multi-scale, multi-domain model is presented, enhancing a Newman based unit cell model with consistent models for heat generation and lithium plating and integrating this 1D+1D approach into a thermal 3D model on module level. The basic equations are presented and three different plating models from literature are discussed. The thermal model is assessed in open-loop simulations and the different plating approaches are compared in charge/discharge simulations at different operating conditions. The full multi-scale, multi-domain model is applied as a virtual sensor for model-based control of fast charging at cold conditions.
Technical Paper

PMSM Noise - Simulation Measurement Comparison

2018-06-13
2018-01-1552
Growing development of hybrid and fully electrical drives increases demand for accurate prediction of noise and vibration characteristic of electric and electronic components. This paper describes the numerical and experimental investigation of noise emission from PMSM electric machine as a one of the most important noise sources in electric vehicles. Structural and air borne noise is measured on e-machine test rig and used for calibration and validation of the numerical model. The electro-magnetic field in PMSM is simulated using finite volume method. Electro-magnetic forces are applied as excitation to the 3D FE model of e-machine, mounded on test frame. Material properties are tuned using results from experimental modal analysis including identification of orthotropic characteristic of stator laminated core, assembled together with coil and end winding. Structural vibrations are calculated by modal frequency response analysis and applied as excitation in air borne noise simulation.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
X