Refine Your Search

Topic

Affiliation

Search Results

Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Journal Article

Control System for a PEM Fuel Cell Powered Heavy Duty Tactical Mobility Truck with Auxiliary Power Generation Capabilities

2013-09-24
2013-01-2472
The incorporation of hydrogen fuel cells into heavy duty tactical mobility vehicles can bring about great opportunities in reducing the pollutant emissions of this kind of platforms (GVW > 30,000 kg). Furthermore the transportation of fuel to operational areas has become a key aspect for any deployment therefore optimal use of this resource is of paramount importance. Finally, it is also quite common for such platforms to serve additional purposes, besides freight delivery, such as powering external equipment (i.e. field hospitals or mobile artillery pieces). This work will describe the intelligent energy management system for a PEM Fuel Cell-Battery-Ultracapacitor Hybrid 8×8 heavy truck of the aforementioned weight class which also contemplates an internal electric/traction power generation unit. It will describe how the system optimizes the use of battery and hydrogen fuel energy while keeping system efficiency and performance at a maximum.
Journal Article

Application of Local Mechanical Tensioning and Laser Processing to Modify the Residual Stress State and Microstructural Features of Multi-Pass HSLA Steel

2015-04-14
2015-01-0604
In a multi-pass weld, the development of residual stress to a large extent depends on the response of the weld metal, heat affected zone and parent material to complex thermo-mechanical cycles during welding. Previous investigations on this subject mostly focused on mechanical tensioning or heat treatment to modify the residual stress distribution in and around the weld. In this research, microstructural refinement with modification of residual stress state was attempted by applying post weld cold rolling followed by laser processing. The hardening of the weld metal was evaluated after welding, post weld cold rolling and post weld cold rolling followed by laser processing. The residual stress was determined non-destructively by using neutron diffraction. Hardness results showed evidence of plastic deformation up to 4 mm below the weld surface.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

Environmental Impact Assessment, on the Operation of Conventional and More Electric Large Commercial Aircraft

2013-09-17
2013-01-2086
Global aviation is growing exponentially and there is a great emphasis on trajectory optimization to reduce the overall environmental impact caused by aircraft. Many optimization techniques exist and are being studied for this purpose. The CLEAN SKY Joint Technology Initiative for aeronautics and Air transport, a European research activity run under the Seventh Framework program, is a collaborative initiative involving industry, research organizations and academia to introduce novel technologies to improve the environmental impact of aviation. As part of the overall research activities, “green” aircraft trajectories are addressed in the Systems for Green Operations (SGO) Integrated Technology Demonstrator. This paper studies the impact of large commercial aircraft trajectories optimized for different objectives applied to the on board systems.
Journal Article

Application of Model Based Functional Specification Methods to Environmental Control Systems Engineering

2011-10-18
2011-01-2504
The paper presents an innovative approach for the functional specification of complex and highly integrated aircraft control systems, such as the Environmental Control System (ECS), by applying model based specification methods. Complexity and effectiveness of modern ECS have significantly increased during the last few years along with development of new technologies and innovations in control engineering as well as digital data distribution and processing. Efficient management of cabin air flows on the one hand makes the ECS more energy-saving and on the other hand more complex with regard to its functionality and interaction with other interfaced aircraft systems. Numerous data interfaces to other systems and a high degree of automation are typical for a modern ECS. The aircraft manufacturer specifies the entire ECS functions and its interactions within the aircraft.
Journal Article

Semi-Automated Vision-Based Construction of Safety Models from Engineering Drawings

2011-10-18
2011-01-2566
The work describes a concept application that aids a safety engineer to create a layup of equipment models by using an image scan of a schematic and a library of predefined standard component and their symbols. The approach uses image recognition techniques to identify the symbols within the scanned image of the schematic from a given library of symbols. Two recognition approaches are studied, one uses General Hough Transform; the other is based on pixel-level feature computation combining both structure and statistical features. The application allows the user to accept or edit the results of the recognition step and allows the user to define new components during the layup step. The tool then generates an output file that is compatible with a formal safety modeling tool. The identified symbols are associated to behavioral nodes from a model based safety tool.
Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

2011-10-18
2011-01-2639
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Journal Article

A Cockpit Point of View on "Human Factors" for a Changing ATM Environment

2011-10-18
2011-01-2709
The vision of SESAR is to integrate and implement new technologies to improve air traffic management (ATM) performance. Enhanced automation and new separation modes characterize the future concept of operations, where the role of the human operator will remain central by integrating more managing and decision-making functions. The expected changes represent challenges for the human actors in the aircraft and on ground and must be taken into account during the development phase. Integrating the human in the ATM system development starting from the early design phase is a key factor for future acceptability. This paper describes the adaptation of currently applied Cockpit Human Factors processes in order to be able to design the aircraft for the future ATM environment.
Journal Article

Optimization of an Unconventional Environmental Control System Architecture

2011-10-18
2011-01-2691
The Environmental Control System is a relevant element of any conventional or More Electric Aircraft (MEA). It is either the key consumer of pneumatic power or draws a substantial load from the electric power system. The objective of this paper is to present a tool for the design of Environmental Control Systems and to apply it to an unconventional system. The approach is based on a recently proposed methodology, which is improved with respect to flexibility and ease-of-use. Furthermore, modeling and simulation of vapor compression cycles is discussed, which are candidate technological solutions for More Electric Aircraft concepts. A steady-state moving boundary method is presented to model heat exchangers for such applications. Finally, the resulting design environment is applied to optimization of an unconventional ECS architecture and exemplary results are presented.
Journal Article

A Model-based Solution to Robust and Early Detection of Control Surface Runaways

2011-10-18
2011-01-2803
This paper discusses the design of a model-based fault detection scheme for robust and early detection of runaways in aircraft control surfaces servo-loop. The proposed scheme can be embedded within the structure of in-service monitoring systems as a part of the Flight Control Computer (FCC) software. The final goal is to contribute to improve the performance detection of unanticipated runaway faulty profiles having very different dynamic behaviors, while retaining a perfect robustness. The paper discusses also the tradeoffs between adequacy of the technique and its implementation level, industrial validation process with Engineering support tools, as well as the tuning aspects. The proposed methodology is based on a combined data-driven and system-based approach using a dedicated Kalman filtering. The technique provides an effective method ensuring robustness and good performance (well-defined real-time characteristics and well-defined error rates).
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

2011-10-18
2011-01-2629
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.
Journal Article

Methodology for Solving Contact Problem during Riveting Process

2011-10-18
2011-01-2582
The paper describes the methodology of contact problem solving that is used in specialized software code aimed at simulation of aircraft assembly process. For considered class of problems it is possible to radically reduce the number of unknowns without loss of accuracy. The results of validation of developed code against physical experiments and commercial FEM codes are also given.
Journal Article

Applying Design for Assembly Principles in Computer Aided Design to Make Small Changes that Improve the Efficiency of Manual Aircraft Systems Installations

2014-09-16
2014-01-2266
The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced. To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time.
Technical Paper

Aeronautical Fuel Cell System Application and Associated Standardization Work

2006-11-07
2006-01-3093
Airbus is a leading aircraft manufacturer with the position as technology driver and a distinct customer orientation, broad commercial know-how and high production efficiencies. It is constantly working on further and new development of its products from ecological and economical points of view. Fuel Cell Systems (FCS) on board of an aircraft provide a good opportunity to address both aspects. Based on existing and upcoming research results it is necessary to find trend-setting measures for the industrial implementation and application of this technology. Past and current research efforts have shown good prospects for the industrial implementation and application of the fuel cell technology. Being an efficient source of primarily electric power the fuel cell would be most beneficial when used in conjunction with electrical systems.
Technical Paper

Stick Fastener Feed System for Large Variety & Small Quantity

2008-09-16
2008-01-2320
Electroimpact has developed a new Fastener Feed System which provides an automated solution for fasteners previously hand fed via drop tubes. The hardware is simple, compact, and is supplied a fraction of the cost of hoppers or cartridges. It can be used as a primary feed system or it can be used as an auxiliary feed system when combined with feed systems designed for high quantities of fasteners. We have installed this system on the A380 Stage 0 LVER lower panel wing machines and feed 5 diameters, 10 grips each, for a total of 50 different fastener types. This system moves 547 total fasteners per ship set from manual feed to automatic feed, saving considerable build time.
Technical Paper

Future Concept of Operations: The Airbus ADS-B Perspective

2010-09-30
2010-01-1660
This paper describes the Airbus plans to use ADS-B in the future concept of operations in both the European SESAR and the US NEXTGEN concepts of operations. It details the different steps that are currently considered by Airbus roadmap to deploy ADS-B services and functions. In particular, the following points are described: Use of ADS-B OUT in Non Radar Airspace Use of ADS-B IN and the associated Airbus functions to offer a better Air Traffic Situation Awareness (ATSAW) package: the various applications for airborne, in trail climb/descent procedures or enhanced visual acquisition are particularly detailed. Use of ADS-B for the future Spacing function as currently considered in the initial ASAS implementation for SESAR: the three “Remain Behind”, “Merge at Waypoint then Remain behind” and the “Heading then merge behind” applications are explained.
Technical Paper

Low Cost Hybrid Motorcycle Optimisation Model

2010-09-28
2010-32-0131
The application of hybridization technology is now widely regarded as a significant step forward to reduce fuel consumption and hence CO₂ emissions for ground vehicles. Many programs and much research has been done on these technologies in the automotive market, however little work has been done in the very cost sensitive market sector of the small motorcycle. This paper introduces and discusses the application of a low-cost hybrid technology to small motorcycles and scooters, and reviews some of the initial trade-offs through the use of a new hybrid simulation model developed at Cranfield University. The study being presented assessed the existing Energy Storage Systems (ESS) in the market. This list was reduced, omitting options which posed a clear safety or cost risk, or solutions which would disproportionally increased the Gross Vehicle Weight (GVW). Also omitted were storage options which could not be production ready in the near term, 3 - 5 years.
Technical Paper

An Algorithm for Assembly Centric Design

2002-09-30
2002-01-2634
This paper describes and demonstrates the use of an assembly centric design algorithm as an aid to achieving minimal hard tooling assembly concepts. The algorithm consists of a number of logically ordered design methodologies and also aids the identification of other enabling technologies. Included in the methodologies is an innovative systems analysis tool that enables the comparison of alternative assembly concepts, and the prediction and control of the total assembly error, at the outline stage of the design.
X