Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improvement of Virtual Vehicle Analysis Efficiency with Optimal Modes Selection in Flexible Multi-Body Dynamics

2013-04-08
2013-01-1193
In the analysis for durability or R&H performance with the full vehicle multibody models, the need for component flexibility is increasing along with demand for more precise full vehicle system. The component elastic deformations are usually expressed by modal superposition from component normal mode analysis with finite element model for reducing model size and simulation time. Although the simulation results of MBD analysis are more accurate according to increasing the number of flexible body and modes, the increasing of flexible components makes worse simulation time and convergence in MBD analysis. Especially, in the MBD analysis including a flexible upper body, in substitution for large number degree of freedom FE model such as trimmed body, it should take a few times longer than the case of rigid upper body This paper proposes the methods of reducing computational cost with adequate mode selections without the loss of simulation accuracy in the flexible MBD.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Journal Article

FE Simulation of the Transmission Loss Performance of Vehicle Acoustic Components at Low and Medium Frequencies

2014-06-30
2014-01-2081
The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment.
Journal Article

A Robust Lane-Keeping ‘Co-Pilot’ System Using LBMPC Method

2015-04-14
2015-01-0322
To provide a feasible transitional solution from all-by-human driving style to fully autonomous driving style, this paper proposed concept and its control algorithm of a robust lane-keeping ‘co-pilot’ system. In this a semi-autonomous system, Learning based Model Predictive Control (LBMPC) theory is employed to improve system's performance in target state tracking accuracy and controller's robustness. Firstly, an approximate LTI model which describes driver-vehicle-road closed-loop system is set up and real system's deviations from the LTI system resulted by uncertainties in the model are regarded as bounded disturbance. The LTI model and bounded disturbances make up a nominal model. Secondly, a time-varying model which is composed of LTI model and an ‘oracle’ component is designed to observe the possible disturbances numerically and it is online updated using Extended Kalman Filter (EKF).
Technical Paper

Appropriate Damping Loss Factor of Vehicle Interior Cavity for Valid Application of Statistical Energy Analysis

2020-09-30
2020-01-1524
It is known that SEA is a rapid and simple methodology for analyzing complex vibroacoustic systems. However, the SEA principle is not always valid and one has to be careful about the physical conditions at which the SEA principle is acceptable. In this study, the appropriate damping loss factor of the vehicle interior cavity is studied in the viewpoint of the modal overlap factor of the cavity and the decay per mean free path (DMFP) of the cavity. Virtual SEA tests are performed with an FE model combination, which is suggested by a previous study of Stelzer et al. for the simulation of the sound transmission loss (STL) of vehicle panel structure. The FE model combination is consisting of the body in white (BIW), an acoustical-excited hemisphere-shaped exterior cavity, and the interior cavity. It is found that the DMFP of the interior cavity is appropriate between 0.5 ~ 1 dB for applying SEA principle.
Journal Article

An Investigation Into New ABS Control Strategies

2016-04-05
2016-01-1639
An investigation into two new control strategies for the vehicle Anti-lock Braking System (ABS) are made for a possible replacement of current non-optimal slip control methods. This paper applies two techniques in order to maximize the braking force without any wheel locking. The first considers the power dissipated by the brake actuator. This power method does not use slip to construct its reference signal for control. A heuristic approach is taken with this algorithm where one searches for the maximum power dissipated. This can open up easier implementation of regenerative braking concurrently with ABS on an electro-hydraulic braking system. Parameter scheduling is explored in this algorithm. The second algorithm employs the use of perturbation based Extremum Seeking Control (ESC) to provide a reference slip and a Youla controller in a negative feedback loop.
Journal Article

The Prediction of Fuel Sloshing Noise Based on Fluid-Structure Interaction Analysis

2011-05-17
2011-01-1695
Fuel sloshing noise is involved with flow motion inside fuel tanks as well as structural characteristics of vehicles. Therefore it is necessary to introduce Fluid-Structure Interaction (FSI) analysis to predict sloshing noise phenomena more accurately. Purposes of this paper are to verify the reliability of the FSI method and suggest new CAE analysis processes to predict fuel sloshing noise. The vibration of floor panels induced by sloshing impact is evaluated through FSI analysis. A series of tests is carried out to validate simulation results. The numerical optimization of parameters is also carried out to reduce computation time. In addition, effects of sloshing noise factors are discussed based on simulation and test results. Lastly, a method to predict fuel sloshing noise by exerting sloshing load on a vehicle is suggested.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Two-Staged Modeling of Alternator

2007-08-05
2007-01-3471
The alternator provides power to vehicle electrical loads with the battery, and its maximum current depends on various factors such as electrical load, engine speed, thermal condition, and other variables. Above all, thermal effects make alternator simulations more complicated. For example statically similar conditions may show different results according to the temperature variation for each alternator operation. This paper proposes a two-stage statistically-based model structure which separates dynamic thermal effects from steady state performance. The method was validated by experiments and shows good predictive performance, suitable for use in test reduction.
Technical Paper

Partial Elasto-Hydrodynamic Lubrication Analysis for Cylindrical Conformal Contact Model Considering Effect of Surface Wave

2007-08-05
2007-01-3533
Numerous machine elements are operated in mixed lubrication regime where is governed by a combination of boundary and fluid film effects. The direct contact between two surfaces reduces a machines life by increasing local pressure. In order to estimate machine's life exactly, the effect of asperity contact should be considered in the lubrication model. In this study, new 3-dimensional partial elasto-hydrodynamic lubrication (PEHL) algorithm is developed. The algorithm contains the procedures to find out solid contact regions within the lubricated regime and to calculate both the pressure by fluid film and the contact pressure between the asperities of the solids. Using the algorithm, we conducted the PEHL analysis for the contact between the rotating shaft and the inside of pinion gear. To investigate the effect of surface topology two different surfaces with sinusoidal profile are used. Both film thickness and pressure are calculated successfully through the PEHL algorithm.
Technical Paper

In-Process Tool Utilization Analysis Based Machining Simulation

1998-06-02
981870
The study aims at analyzing the tool utilization by using a real-time machining simulation and investigating the behavior of the parameters which affect the tool wear based on the results of the analysis. In this study, the method of calculation of parameters which are necessary to predict the tool wear by using Z-map based machining simulation is developed. Furthermore, the possibility of estimating the tool wear from the results of the simulation was also examined by performing the real cutting experiments.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

Critical Issues in Quantifying Hybrid Electric Vehicle Emissions and Fuel Consumption

1998-08-11
981902
Quantifying Hybrid Electric Vehicle (HEV) emissions and fuel consumption is a difficult problem for a number of different reasons: 1) HEVs can be configured in significantly different ways (e.g., series or parallel); 2) the Auxiliary Power Unit (APU) can consist of a wide variety of engines, fuel types, and sizes; and 3) the APU can be operated very differently depending on the energy management system strategy and the type of driving that is performed (e.g., city vs. highway driving). With the future increase of HEV penetration in the vehicle fleet, there is an important need for government agencies and manufacturers to determine HEV emissions and fuel consumption. In this paper, several critical issues associated with HEV emissions and fuel consumption are identified and analyzed, using a sophisticated set of HEV and emission simulation modeling tools.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

Characteristics of the Luxury Sound Quality of a Premium Class Passenger Car

2009-05-19
2009-01-2183
Luxury sound is one of the most important sound qualities in a premium passenger car. Previous work has shown that, because of the effects of many different interior sounds, it is difficult to evaluate the luxury sound objectively by using only the A-weighted sound pressure level. In this paper, the characteristics of such sound were first investigated by a systematic approach and a new objective evaluation method for luxury sound-the luxury sound quality index--which was developed by the systematic combination of the seven major interior sound quality indexes based on path analysis. The seven major sounds inside a passenger car were selected by a basic investigation evaluated by the members of a luxury automotive club. Seven major interior sound quality indexes were developed by using sound metrics, which are the psychoacoustic parameters, and the multiple regression method used for the modeling of the correlation between objective and subjective evaluation.
Technical Paper

Development of CAE Methodology for Rollover Sensing Algorithm

2009-04-20
2009-01-0828
The Rollover CAE model is developed for Rollover sensing algorithm in this paper. By using suggested CAE model, it is possible to make sensing data of rollover test matrix and these data can be used for calibration of rollover sensing algorithm. Developed vehicle model consists of three parts: a vehicle parts, an occupant parts and a ground boundary conditions. The vehicle parts include detailed suspension model and FE structure model. The occupant parts include ATD (anthropomorphic test device) male dummy and restraint systems: Curtain Airbag and Seat-Belt. We find analytical value of the suspension model through correlation with vehicle drop test, simulate this model under the conditions of untripped (Embankment, Corkscrew) and tripped (Curb-Trip, Soil-Trip) rollover scenarios. Comparison of the simulation and experimental data shows that the simulation results of suggested CAE model can be substituted for the experimental ones in calibration of rollover sensing algorithm.
Technical Paper

The Procedure for Improving R&H Performance of the New 2010 Hyundai Sonata by Modal Parameter Modification of Its Body

2010-04-12
2010-01-1136
Various deformation shapes of the vehicle body were investigated for the purpose to establish vehicle body's performance criteria which correlates well to handling performance and ride comfort. Using CAE tool, the dynamic behavior of a structure by its modal parameter can be described instead of by its nodes and elements. Each modal characteristic in a dynamic system is reduced by its modal stiffness, its modal mass and its damping parameter in the model. This technology offers not only computational efficiency but also parametric model enabling easy what-if simulation. This reduced model can be obtained by modal test as well as simulation of full FE model. It was also investigated that which mode is sensitive to ride or handling performance using the parameterized model. The body stiffness of the brand new 2010 SONATA was improved on reference to the sensitivity analysis. The ride and handling performance of the 2010 SONATA were verified by computer simulation and vehicle field test
X