Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Advanced Space Suit Portable Life Support Subsystem Packaging Design

2006-07-17
2006-01-2202
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA's in-house 1998 study, which resulted in the “Flex PLSS” concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Preliminary Design Methodology for an Advanced Extravehicular Mobility Unit Portable Life Support Subsystem

1995-07-01
951672
Developing advanced technology through the prototype phase on a system as complex as a Portable Life Support Subsystem (PLSS) for an Extravehicular Mobility Unit (EMU) is a time and resource consuming process. Experience has shown that most of the decisions controlling the life cycle cost of a system intended for operational use are made very early in the design process. By the preliminary design review most of the design-controlled cost drivers are locked into the design. To ensure a reasonable chance for the design to successfully meet mission requirements, it is best to choose the most promising, most likely-to-succeed technology available in the early stages of breadboard and preprototype development.
Technical Paper

Thermal Design of the Tropospheric Emission Spectrometer Instrument

2000-07-10
2000-01-2274
The Tropospheric Emission Spectrometer (TES) is a cryogenic instrument which will be launched on NASA's Earth Observation System (EOS) Chemistry Platform in the year 2003. The overall mission lifetime for the instrument is 5 years with an additional period of 2 years required for ground test and calibration. The EOS Chemistry Platform will be placed in a sun-synchronous near-circular polar orbit with an inclination of 98.2 degrees and a mean altitude of 705 km. The overall objective of TES is the investigation and quantification of global climate change, both natural and anthropogenic. It is a high resolution infrared imaging (1×16 pixels) Fourier Transform Spectrometer with spectral coverage of 3.3-15.4 μm at a spectral resolution of 0.10 cm−1 or 0.025 cm−1 intended for the measurement and profiling of essentially all infrared-active molecules present in the Earth's lower atmosphere (0-30+ km).
Technical Paper

ISS TransHab: Architecture Description

1999-07-12
1999-01-2143
This paper will describe the ISS TransHab’s architectural design being proposed as a habitation module for the International Space Station. TransHab is a space inflatable habitation module that originally was designed to support a crew of six as a transit habitat (TransHab) to and from Mars. As an evolution of TransHab, it has transformed into the proposed alternative habitat module for the International Space Station (ISS). A team of architects and engineers at the Johnson Space Center has been designing and testing this concept to make it a reality.
Technical Paper

Thermal Design and On-Orbit Performance of the Multi-Angle Imaging SpectroRadiometer

2001-07-09
2001-01-2262
The Multi-angle Imaging SpectroRadiometer (MISR) instrument was launched aboard NASA’s Earth Observing System (EOS) Terra spacecraft on December 18, 1999. The overall mission design lifetime for the instrument is 6 years. The EOS Terra spacecraft was placed in a sun-synchronous near-circular polar orbit with an inclination of 98.3 degrees and a mean altitude of 705 km. The overall objective of MISR is to provide a means to study the ecology and climate of Earth through the acquisition of global multiangle imagery on the daylit side of Earth. MISR views the sunlit Earth simultaneously at nine widely spaced angles, collects global images with high spatial detail in four colors at every angle. The images acquired, once calibrated, provide accurate measurements of brightness, contrast and color of reflected sunlight.
X