Refine Your Search

Topic

Author

Search Results

Journal Article

Achieving Very Low PN Emissions with an Advanced Multi-Hole Injector Functionality and Adapted Spray Targeting Under High Fuel Pressure Conditions

2014-10-13
2014-01-2605
In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Journal Article

Management of Energy Flow in Complex Commercial Vehicle Powertrains

2012-04-16
2012-01-0724
After the realization of very low exhaust gas emissions and corresponding OBD requirements to fulfill Euro VI and Tier 4 legislation, the focus in heavy-duty powertrain development is on the reduction of fuel consumption and thus CO₂ emissions again. Besides this, the total vehicle operation costs play another major role. A holistic view of the overall powertrain system including the combustion process, exhaust gas aftertreatment, energy recuperation and energy storage is necessary in order to obtain the best possible system for a given application. A management system coordinating the energy flow between the different subsystems while guaranteeing low exhaust emissions plays a major part in operating such complex architectures under optimal conditions.
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Model-based optimization methods of combined DPF+SCR Systems

2007-09-16
2007-24-0098
The design of integrated exhaust lines that combine particulate and NOx emission control is a multidimensional optimization problem. The present paper demonstrates the use of an exhaust system simulation platform which is composed of well-established multidimensional mathematical models for the transient thermal and chemical phenomena in DOC, DPF and SCR systems as well as connecting pipe heat transfer effects. The analysis is focused on the European Driving Cycle conditions. Illustrative examples on complete driving cycle simulations with and without forced regeneration events are presented for alternative design approaches. The results illustrate the importance of DOC and DPF heat capacity effects and connecting pipe heat losses on the SCR performance. The possibility of combining DPF and SCR functionality on a single wall-flow substrate is studied.
Technical Paper

Control Strategies for Peak Temperature Limitation in DPF Regeneration Supported by Validated Modeling

2007-04-16
2007-01-1127
One of the main challenges in developing cost-effective diesel particulate filters is to guarantee a thermally safe regeneration under all possible conditions on the road. Uncontrolled regenerations occur when the soot reaction rate is so high that the cooling effect of the incoming exhaust gas is insufficient to keep the temperature below the required limit for material integrity. These conditions occur when the engine switches to idle while the filter is already hot enough to initiate soot oxidation, typically following engine operation at high torque and speed or active filter regeneration. The purpose of this work is to investigate engine management techniques to reduce the reaction rate during typical failure mode regenerations. A purely experimental investigation faces many difficulties, especially regarding measurement accuracy, repeatability in filter soot loading, and repeatability in the regeneration protocol.
Technical Paper

Model-based Optimization of Catalyst Zoning in Diesel Particulate Filters

2008-04-14
2008-01-0445
Catalyzed wall-flow particulate filters are increasingly applied in diesel exhaust after-treatment for multiple purposes, including low-temperature catalytic regeneration, CO and hydrocarbon conversion, as well as exothermic heat generation during forced regeneration. In order to optimize Precious Metals usage, it may be advantageous to apply the catalytic coating non-uniformly in the DPF, a technology referred to as “catalyst zoning”. In order to simulate the behavior of such a filter, one has to consider coupled transport-reaction modeling. In this work, a previously developed model is calibrated versus experimental data obtained with full-scale catalyzed filters on the engine dynamometer. In a next step, the model is validated under a variety of operating conditions using engine experiments with zoned filters. The performance of the zoned catalyst is analyzed by examining the transient temperature and species profiles in the inlet and outlet channels.
Technical Paper

Experimental Evaluation of the Fuel Consumption and Emissions Reduction Potential of Low Viscosity Lubricants

2009-06-15
2009-01-1803
Reducing fuel consumption and emissions from road transport is a key factor for tackling global warming, promoting energy security and sustaining a clean environment. Several technical measures have been proposed in this aspect amongst which the application of low viscosity engine lubricants. Low viscosity lubricants are considered to be an interesting option for reducing fuel consumption (and CO2 emissions) throughout the fleet in a relatively cost effective way. However limited data are available regarding their actual “real-world” performance with respect to CO2 and other pollutant emissions. This study attempts to address the issue and to provide experimental data regarding the benefit of low viscosity lubricants on fuel consumption and CO2 emissions over both the type-approval and more realistic driving cycles.
Technical Paper

Optimization Methodologies for DPF Substrate-catalyst Combinations

2009-04-20
2009-01-0291
As the Diesel Particulate Filter (DPF) technology is nowadays established, research is currently focusing on meeting the emission and durability requirements by proper system design. This paper focuses on the optimum combination between the catalytic coating and substrate structural properties using experimental and simulation methodologies. The application of these methodologies will be illustrated for the case of SiC substrates coated with innovative sol-gel coatings. Coated samples are characterized versus their uncoated counterparts. Multi-dimensional DOC and DPF simulation models are used to study several effects parametrically and increase our understanding on the governing phenomena. The comparative analysis of DOC/DPF systems covers filtration – pressure drop characteristics, CO/HC/NO oxidation performance, effect of washcoat amount and catalyst dispersion on oxidation activity and finally passive regeneration performance.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

Investigations on Ventilation Strategies for SI Cylinder Deactivation Based on a Variable Valve Train

2016-10-17
2016-01-2346
Advanced SI engines for passenger cars often use the cylinder deactivation technology for dethrottling and thus achieving a reduction of fuel consumption. The gas exchange valves of the deactivated cylinders are closed permanently by a zero lift of the cams. The solutions for cylinder deactivation can vary in the kind of gas composition included in the deactivated cylinders: charge air, exhaust gas or vacuum. All these strategies have in common the frequent loss of captured charge mass from cycle to cycle. Their two-stroke compression-expansion cycle additionally intensifies this phenomenon. Thus, a significant decrease of the minimum cylinder pressure can cause an undesired entry of lubricant into the combustion chamber. The idea was to ventilate the generally deactivated cylinders frequently to compensate the loss of captured cylinder charge mass. The task was to keep the minimum cylinder pressure above a certain limit to prevent the piston rings from a failure.
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

Achieving the Max - Potential from a Variable Compression Ratio and Early Intake Valve Closure Strategy by Combination with a Long Stroke Engine Layout

2017-09-04
2017-24-0155
The combination of geometrically variable compression (VCR) and early intake valve closure (EIVC) proved to offer high potential for increasing efficiency of gasoline engines. While early intake valve closure reduces pumping losses, it is detrimental to combustion quality and residual gas tolerance due to a loss of temperature and turbulence. Large geometric compression ratio at part load compensates for the negative temperature effect of EIVC with further improving efficiency. By optimizing the stroke/bore ratio, the reduction in valve cross section at part load can result in greater charge motion and therefore in turbulence. Turbocharging means the basis to enable an increase in stroke/bore ratio, called β in the following, because the drawbacks at full load resulting from smaller valves can be only compensated by additional boosting pressure level.
Technical Paper

Design and Application of Catalyzed Metal Foam Particulate Filters

2006-10-16
2006-01-3284
This paper presents experimental and modeling results related to the application of a novel material as a diesel particulate filter substrate. The material, trademarked as INCOFOAM® HighTemp, is a Ni-based superalloy foam. The material can be produced in sheet form with a large range of microstructure parameters. Thanks to the mechanical properties of the sheets, they can be flexibly shaped in various forms. The foam can be washcoated with active catalytic material to promote regeneration. The experimental testing covers flow and pressure drop behavior with air and exhaust gas, filtration efficiency measurements as function of particle size and regeneration rate measurements. The testing starts from mini-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests with legislated driving cycles. Special emphasis is given to the characterization of the foam as a catalyst substrate.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Modeling the Interactions Of Soot and SCR Reactions in Advanced DPF Technologies with Non-homogeneous Wall Structure

2012-04-16
2012-01-1298
The pressure for compact and efficient deNO systems has led to increased interest of incorporating SCR coatings in the DPF walls. This technology could be very attractive especially if high amounts of washcoat loadings could be impregnated in the DPF porous walls, which is only possible with high porosity filters. To counterbalance the filtration and backpressure drawbacks from such high porosity applications, the layered wall technology has already been proposed towards minimizing soot penetration in the wall and maximizing filtration efficiency. In order to deal with the understanding of the complex interactions in such advanced systems and assist their design optimization, this paper presents an advanced modeling framework and selected results from simulation studies trying to illustrate the governing phenomena affecting deNO performance and passive DPF regeneration in the above combined systems.
X