Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

CFD Modeling of Gas-Fuel Interaction and Mixture Formation in a Gasoline Direct-Injection Engine Coupled With the ECN Spray G Injector

2020-04-14
2020-01-0327
The thorough understanding of the effects due to the fuel direct injection process in modern gasoline direct injection engines has become a mandatory task to meet the most demanding regulations in terms of pollutant emissions. Within this context, computational fluid dynamics proves to be a powerful tool to investigate how the in-cylinder spray evolution influences the mixture distribution, the soot formation and the wall impingement. In this work, the authors proposed a comprehensive methodology to simulate the air-fuel mixture formation into a gasoline direct injection engine under multiple operating conditions. At first, a suitable set of spray sub-models, implemented into an open-source code, was tested on the Engine Combustion Network Spray G injector operating into a static vessel chamber. Such configuration was chosen as it represents a typical gasoline multi-hole injector, extensively used in modern gasoline direct injection engines.
Journal Article

UV-Visible Spectroscopic Measurements of Dual-Fuel PCCI Engine

2011-09-11
2011-24-0061
In this work, optical diagnostics were applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat bio-ethanol was performed in the intake manifold and European commercial diesel fuel was injected into the cylinder. Different amounts of bio-ethanol were injected in order to create PCCI combustion with high levels of pre-combustion mixing, and to ensure low equivalence ratio and low flame temperatures too. UV-Visible imaging and spectroscopic measurements were performed in the engine in order to investigate the autoignition of the charge and the combustion process, respectively. In particular, the detection of the species involved in the combustion, like OH, HCO, and CH, was performed. The relevance of the radicals and species on PCCI were evaluated and compared with the data from thermodynamic analysis.
Journal Article

Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine

2013-04-08
2013-01-0852
In the last years, even more attention was paid to the alternative fuels which can allow both reducing the fuel consumption and the pollutant emissions. Among gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels leading to lower CO₂ emissions; if compared to gasoline, CH₄ has wider flammable limits and better anti-knock properties, but lower flame speed. The addition of H₂ to CH₄ can improve the already good qualities of methane and compensate its weak points. In this paper a comparison was carried out between CH₄ and different CH₄/H₂ mixtures. The measurements were carried out in an optically accessible small single-cylinder, Port Fuel Injection spark ignition (PFI SI), four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycle engine representative of the most popular two-wheel vehicles in Europe.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

Oxygen and Propellant Extraction from Martian Atmosphere: Feasibility Study of a Small Technological Demonstration Plant

2008-06-29
2008-01-1984
The sustainability of Martian outposts development is strongly based on the capability of achieving a high level of autonomy both in terms of operations management and of resources availability. In situ production of consumables is a key point to allow humans to work and live on Mars avoiding or limiting the need for re-supplies of materials from Earth. Required consumables can be produced in situ exploiting the locally available resources, but also by means of green-houses and waste recycle systems. Dedicated robotic missions for in situ demonstration of this type of technologies are a fundamental step of the Martian In Situ Resources Utilization (ISRU) development roadmap. This paper is focused on the extraction of oxygen and fuels (e.g. methane) from the Martian atmosphere, and presents a feasibility study for a small technological demonstration plant.
Technical Paper

Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine

2017-03-28
2017-01-0545
Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

IR Imaging of Premixed Combustion in a Transparent Euro5 Diesel Engine

2011-09-11
2011-24-0043
In the present paper, infrared (IR) measurements were performed in order to study the development of injection and combustion in a transparent Euro 5 diesel engine operating in premixed mode. An elongated single-cylinder engine equipped with the multi-cylinder head of commercial passenger car and with common rail (CR) injection system, respectively, was used. A sapphire window was set in the bottom of the combustion chamber, and a sapphire ring was placed between the head and the top of the cylinder line. Measurements were carried out through both accesses by a new high-speed infrared (IR) digital imaging system obtaining information that was difficult to achieve by the conventional UV-visible camera. IR camera was able to detect the emitted light in the wavelength range 1.5-5 μm that is relevant for the emission bands of CO₂ and H₂O. The evaporation phase of pre and main injection, and subsequent combustion evolution were analyzed.
Technical Paper

CFD Analysis of the Combustion Process in Dual-Fuel Diesel Engine

2018-04-03
2018-01-0257
Dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. The dual-fuel (diesel/natural gas) concept represents a possible solution to reduce emissions from diesel engines by using natural gas (methane) as an alternative fuel. Methane was injected in the intake manifold while the diesel oil was injected directly into the engine. The present work describes the results of a numerical study on combustion process of a common rail diesel engine supplied with natural gas and diesel oil. In particular, the aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution. The study of dual-fuel engines that is carried out in this paper aims at the evaluation of the CFD potential, by a 3-dimensional code, to predict the main features of this technology.
Technical Paper

Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine

2013-09-08
2013-24-0046
In this paper the methane-gasoline dual fuel combustion was investigated. Gasoline was injected in the intake manifold (PFI fuel), while methane was injected in the combustion chamber (DI fuel), in order to reproduce a stratified combustion. The combustion process and the related engine performance and pollutant emissions were analyzed. The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc engine representative of the most popular two-wheel vehicles in Europe. Optical measurements were performed to analyze the combustion process with high spatial and temporal resolution. In particular, optical techniques based on 2D-digital imaging were used to follow the flame front propagation and the soot and temperature concentration in the combustion chamber.
Technical Paper

Comparison of Numerical and System Dynamics Methods for Modeling Wave Propagation in the Intake Manifold of a Single-Cylinder Engine

2013-09-08
2013-24-0139
The automotive industry is striving to adopt model-based engine design and optimization procedures to reduce development time and costs. In this scenario, first-principles gas dynamic models predicting the mass, energy and momentum transport in the engine air path system with high accuracy and low computation effort are extremely important today for performance prediction, optimization and cylinder charge estimation and control. This paper presents a comparative study of two different modeling approaches to predict the one-dimensional unsteady compressible flow in the engine air path system. The first approach is based on a quasi-3D finite volume method, which relies on a geometrical reconstruction of the calculation domain using networks of zero-dimensional elements. The second approach is based on a model-order reduction procedure that projects the nonlinear hyperbolic partial differential equations describing the 1D unsteady flow in engine manifolds onto a predefined basis.
Technical Paper

Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine

2021-04-06
2021-01-0465
The new real driving emission cycles and the growing adoption of turbocharged GDI engines are directing the automotive technology towards the use of innovative solutions aimed at reducing environmental impact and increasing engine efficiency. Water injection is a solution that has received particular attention in recent years, because it allows to achieve fuel savings while meeting the most stringent emissions regulations. Water is able to reduce the temperature of the gases inside the cylinder, coupled with the beneficial effect of preventing knock occurrences. Moreover, water dilutes combustion, and varies the specific heat ratio of the working fluid; this allows the use of higher compression ratios, with more advanced and optimal spark timing, as well as eliminating the need of fuel enrichment at high load. Computational fluid dynamics simulations are a powerful tool to provide more in-depth details on the thermo-fluid dynamics involved in engine operations with water injection.
Technical Paper

Ethanol Addition Influence on Backfire Phenomena during Kickback in a Spark-Ignition Transparent Small Engine

2014-11-11
2014-32-0093
This paper investigates abnormal combustion during the cranking phase of spark-ignition small engines, specifically the occurrence of backfire at the release of the starter motor during kickback. The research focusses on the influence of fuel composition, mainly in terms of ethanol percentage, on backfire occurrence. Interest in this abnormal combustion is growing due to the increased use of fuels with different chemical-physical properties with respect to gasoline. Moreover, this issue will become even more topical due to the implementation of simple control and fuel supply systems on low cost-engines, which are widely used in developing countries. Experimentation was carried out in an optically accessible engine derived from a 4-stroke spark ignition engine for two-wheel vehicles. The test bench was instrumented and adapted in order to simulate the engine conditions that lead to anomalous ignition in the intake duct (backfire) during the reverse rotation of the engine (kickback).
Technical Paper

An experimental investigation on combustion and engine performance and emissions of a methane-gasoline dual-fuel optical engine

2014-04-01
2014-01-1329
The use of methane as supplement to liquid fuel is one of the solution proposed for the reduction of the internal combustion engine pollutant emissions. Its intrinsic properties as the high knocking resistance and the low carbon content makes methane the most promising clean fuel. The dual fuel combustion mode allows improving the methane combustion acting mainly on the methane slow burning velocity and allowing lean burn combustion mode. An experimental investigation was carried out to study the methane-gasoline dual fuel combustion. Methane was injected in combustion chamber (DI fuel) while gasoline was injected in the intake manifold (PFI fuel). The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycles engine representative of the most popular two-wheel vehicles in Europe.
Technical Paper

Experimental Characterization of Methane Direct Injection from an Outward-Opening Poppet-Valve Injector

2019-09-09
2019-24-0135
The in-cylinder direct injection of natural gas can be a further step towards cleaner and more efficient internal combustion engines (ICE). However, the injector design and its characterization, both experimentally and by numerical simulation, is challenging because of the complex fluid dynamics related to gas compressibility and the small length scale. In this work, the under-expanded flow of methane from an outward-opening poppet-valve injector has been experimentally characterized by high-speed schlieren imaging. The investigation has been performed at ambient temperature and pressure and different nozzle pressure ratios (NPR) ranging from 10 to 18. The gaseous jet has been characterized in terms of its macroscale parameters. A scaling-law analysis of the results has been performed. The gas-dynamic structure at the nozzle exit has been also investigated.
Technical Paper

Analysis of Dual Fuel Combustion in Single Cylinder Research Engine Fueled with Methane and Diesel by IR Diagnostics

2019-04-02
2019-01-1165
In the present study, dual fuel mode is investigated in a single cylinder optical compression ignition (CI) research engine. Methane is injected in the intake manifold while the diesel is delivered via the standard injector directly into the engine. The aim is to study by non-intrusive diagnostics the effect of increasing methane concentration at constant injected diesel amount during the combustion evolution from start of combustion. IR imaging is applied in cycle resolved mode. Three filters are adopted to detect from injection to combustion phase with high spatial and temporal resolution: OD1.45 (3-5.5 μm), band pass 3.3 μm (hydrocarbons) and band pass 4.2 μm (CO2). Using the band pass IR imaging qualitative information about fuel-vapor distribution and ignition locations during low and high temperature combustion have been provided.
Technical Paper

Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled with Methane and Diesel

2015-09-06
2015-24-2461
In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution in an optically accessible engine. Emissions are in line with those previously published by other authors, it is noted no PM and constant NOx emissions. Moreover, a decrease of the brake specific CO emissions and an increase of the brake specific THC for the operating condition with the highest premixed ratio was detected. THC was mainly constituted by methane unburned hydrocarbons. Combustion resulted more or less stable. Moreover, via both UV-VIS spectroscopy and digital imaging, the spatial distribution of several species involved in the combustion process was analyzed.
Journal Article

Infrared/Visible Optical Diagnostics of RCCI Combustion with Dieseline in a Compression Ignition Engine

2020-04-14
2020-01-0557
Compression ignition engines are widely used for transport and energy generation due to their high efficiency and low fuel consumption. To minimize the environmental impact of this technology, the pollutant emissions levels at the exhaust are strictly regulated. To reduce the after-treatment needs, alternative strategies as the low temperature combustion (LTC) concepts are being investigated recently. The reactivity controlled compression ignition (RCCI) uses two fuels (direct- and port- injected) with different reactivity to control the in-cylinder mixture reactivity by adjusting the proportion of both fuels. In spite of the proportion of the port-injected fuel is typically higher than the direct-injected one, the characteristics of the latter play a main role on the combustion process. Use of gasoline for direct injection is attractive to retard the start of combustion and to improve the air-fuel mixing process.
Technical Paper

The Full Cycle HD Diesel Engine Simulations Using KIVA-4 Code

2010-10-25
2010-01-2234
With the advent of the KIVA-4 code which employs an unstructured mesh to represent the engine geometry, the gap in flexibility between commercial and research modeling software becomes more narrow. In this study, we tried to perform a full cycle simulation of a 4-stroke HD diesel engine represented by a highly boosted research IF (Isotta Fraschini) engine using the KIVA-4 code. The engine mesh including the combustion chamber, intake and exhaust valves and helical manifolds was constructed using optional O-Grids catching a complex geometry of the engine parts with the help of the ANSYS ICEM CFD software. The KIVA-4 mesh input was obtained by a homemade mesh converter which can read STAR-CD and CFX outputs. The simulations were performed on a full 360 deg mesh consisting of 300,000 unstructured hexahedral cells at BDC. The physical properties of the liquid fuel were taken corresponding to those of real diesel #2 oil.
X