Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Acoustic Enclosure Optimization for a Higher Capacity Diesel Generator Set Using Statistical Energy Analysis (SEA) Based Approach

2017-01-10
2017-26-0188
Diesel powered electric generators are used in a variety of applications, such as emergency back-up power, temporary primary power at industrial facilities, etc. As regulatory and customer requirements demand quieter designs, special attention is given to the design of acoustic enclosures to balance the need of noise control with other performance criteria like ventilation and physical protection. In the present work, Statistical Energy Analysis (SEA) approach augmented by experimental inputs is used to carry out Vibro-acoustic analysis of an enclosure for higher capacity Diesel generator set. The exterior sound radiated from an enclosed generator is predicted and further enclosure is optimized for an improved sound-suppression. The airborne sources such as engine, alternator, radiator fan and exhaust are modelled explicitly using experimental noise source characterization. Structure borne inputs are also captured in the test for improving modelling accuracy.
Technical Paper

Sound Quality Evaluation of a Brake and Clutch Pedal Assembly used for Automotive Applications

2017-01-10
2017-26-0194
Sound Quality (SQ) of brake and clutch pedal assembly plays an important role in contributing to vehicle interior noise and perception of sound. Quiet operation of brake and clutch units also reflects the vehicle built and material quality. Noise emitted from these sub-assemblies has to meet certain acceptance criteria as per different OEM requirements. Not much work has been carried on this over the years to characterize and quantify the same. An attempt has been made in this paper to study the sound quality of brake and clutch pedal assemblies at component level and validate the same by identifying the parameters affecting SQ. Effect on noise at different environmental conditions was studied with typical operating cycles in a hemi-anechoic chamber. The effect of sensor switches integrated within the clutch and brake pedal on sound quality is analyzed. It is found that the operating characteristics of switches drives the noise and SQ.
Technical Paper

Quantification of NVH Parameters in DC Electric Motors Used for Automobile Application

2017-01-10
2017-26-0209
With growing demand of comfort of cars, number of small electric motors used for adjustment of different functional units is steadily increasing. Due to the various rotational components and the forces they accord, electric motors radiate significant amount of noise at high frequencies with tonal components that can be annoying. Motor noise comprises three sources namely: electromagnetic, aerodynamic and mechanical. This study considers mechanical and electromagnetic sources of Electric Power Assisted Steering (EPAS) motor used in passenger cars. This paper describes an approach to assess noise and vibration parameters between field motors and fresh motors. Noise and vibration spectrums are analyzed in terms of frequency contents and dominancy of mechanical sources in sound power radiated by motor is discussed. FE modal analysis of motor is performed and correlated with impact hammer measurements to quantify structure borne energy contribution.
Technical Paper

LCV Chassis Frame Optimization Using Combined Simulation and Experimental Approach

2017-01-10
2017-26-0289
The design and development of complete vehicle, understanding of chassis system development process is an important task. Chassis frame of a vehicle is supporting member, both structurally and functionally, to all other chassis aggregate systems viz. suspension, steering, braking system etc. In this paper, a methodology for chassis frame model construction and validation is explained. In present work, chassis frame model is validated in terms of modal parameters and also against static loading conditions. Existing chassis 3D Computer Aided Design (CAD) data was generated using scanning and cloud point data conversion technique. FE model was generated and validated through experimental measurements viz. modal testing, vertical bending, lateral bending, and torsional bending test. Loading and boundary conditions were replicated on the complete FE model in CAE domain and test validation was carried out using appropriate mesh biasing and weld modeling techniques.
Technical Paper

Prediction of Thermal Comfort Inside a Midibus Passenger Cabin Using CFD and Its Experimental Validation

2015-01-14
2015-26-0210
This paper presents a methodology for predicting thermal comfort inside Midibus cabin with an objective to modify the Heating, Ventilation and Air Conditioning (HVAC) duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
Technical Paper

Use of Combined CAE and Experimental Testing Approach for Engine Noise Reduction

2015-01-14
2015-26-0123
The work presented in this paper deals with the use of combined Computer Aided Engineering (CAE) and experimental testing approach for reducing engine noise. The paper describes a systematic approach for giving solutions to the structure borne engine noise related problems. Noise Source Identification (NSI) was carried out on diesel engine to identify noise radiating sources, ranking of noise sources was carried out and contribution of individual engine component in radiated Sound Power Level (SWL) was computed. Detailed Finite Element Model (FEM) of engine assembly was developed and model was correlated in terms of natural frequencies and transfer functions by performing modal testing. Correlated FEM was used for predicting surface vibration velocities under various engine speeds and loading conditions in frequency domain. Velocities so predicted in frequency domain were used as an input for SWL prediction using Boundary Element Method (BEM) approach.
Technical Paper

Sound Quality Rating of Passenger Car Diesel Powertrains

2017-01-10
2017-26-0189
The parameters such as lower noise levels, quietness, etc. of a vehicle has no longer remained the only driving features since the passenger car buyers are greatly influenced by the perception of the sound. In a scenario like this, the sound quality becomes of great importance especially for smaller diesel powertrains as they are more annoying than their gasoline counterparts. The idling noise is critical as its noise creates the first impression of the vehicle on the buyer. The Indian passenger car market is dominated by diesel cars equipped with smaller engines less than 2 liter capacity. Present work describes the methodology to formulate the equation for annoyance/pleasantness for the diesel powertrains used in Indian passenger cars. The index, Sound Annoyance Rating (SAR) developed through this work is significant for powertrain level target setting and benchmarking purposes.
X