Refine Your Search

Topic

Author

Search Results

Journal Article

Analytical Model for Human Thermal Comfort in Passenger Vehicles

2011-04-12
2011-01-0130
An analytical model, which takes care of thermal interactions of human body with surroundings via basic heat transfer modes like conduction, convection, radiation and evaporation, is compiled. The analytical model takes measurable inputs from surroundings and specific human parameters. Using these parameters a quick calculation entailing all heat transfer modes ensues in net heat exchange of human body with surroundings. Its magnitude and direction decides the qualitative indication of thermal comfort of concerned human being. The present model is scaled on actual human beings by noting the subjective assessment in comfortable as well as uncomfortable surroundings. As a part of validation, it is implemented in an actual Climatic Wind Tunnel Heater test, where temperatures and other parameters on different parts of the body are noted down and fed to the model as input. Output of the equation is then compared with the subjective assessment of human beings.
Journal Article

Performance and Emission Characterization of 1.2L MPI Engine with Multiple Fuels (E10, LPG and CNG)

2010-04-12
2010-01-0740
Most of the energy consumed in today's mobility industry is derived from fossil fuels. The demand for clean, renewable and affordable alternative energy is forcing the automotive industry to look beyond the conventional fossil fuels. Fuels options like liquefied petroleum gas (LPG), compressed natural gas (CNG) and ethanol blends are quickly finding widespread acceptance as alternative sources. This paper presents the results of experimental studies conducted on a 1.2-liter MPI engine with three different alternate fuels. The fuels considered for the evaluation (apart from base gasoline) are 10% ethanol-blended fuel (E10), LPG (gaseous propane: butane mix) and CNG (gaseous methane). Experiments were conducted to compare their effect on engine performance and emissions. The test results show that E10 has the lowest power drop whereas CNG has the highest power drop (12%) as compared to gasoline. The maximum power drop in LPG is 4%, which is close to the theoretical predictions.
Technical Paper

Development of Full Car Model for Ride Analysis of Light Duty Bus using MATLAB Simulink

2021-09-22
2021-26-0088
Ride is considered to be one of the crucial criterion for evaluating the performance of a vehicle. Automobile industry is striving for improvement in designs to provide superior passenger comfort in Commercial vehicles segment. In Industry, Quarter-car model has been used for years to study the vehicle’s ride dynamics. But due to lower DOF involved in quarter car, the output accuracy is somewhat compromised. This paper aims in development of a 7 DOF full-car Model to perform the ride- comfort analysis for Light Duty 4*2 Commercial Bus using MATLAB Simulink which can be used to tune the suspension design to meet the required ride-comfort criteria. Firstly, experimental data and Physical Parameters are collected by performing Practical Test on commercial Bus on different road profiles. Secondly, a Full Car Mathematical Model with 7 DOF has been developed for a bus using MATLAB Simulink R2018a.
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

Chemical Profiling of Exhaust Particulate Matter from Indian In-Service Vehicles

2021-09-22
2021-26-0192
Particulate matter is one of the major pollutant responsible for deteriorating air quality, particularly in urban centers. Information on contributing sources with the share from different sources is a first and one of the important steps in controlling pollution. Diverse sources, anthropogenic as well as natural, like industries, transport, domestic burning, construction, wind-blown dust, road dust contribute to particulate matter pollution. Receptor modeling is a scientific method which is utilized for assessment of the contribution of various sources based on chemical characteristics of particulate matter sources and ambient air particulate matter. Representative data of fractions of various chemical species in the particulate matter from the different sources i.e. source fingerprint is an essential input for the receptor modeling approach.
Technical Paper

Failure of Li-Ion 18650 Cylindrical Cells Subjected to Mechanical Loading and Computational Model Development

2021-09-22
2021-26-0318
To enhance the crashworthiness of electric vehicles, designing the optimized and safer battery pack is very essential. The deformed battery cell can result in catastrophic events like thermal runaway and thus it becomes crucial to study the mechanical response of battery cell. The goal of the research is to experimentally investigate the effect of mechanical deformation on Lithium-ion battery cell. The paper thoroughly studies the phenomenon of short circuiting at the time of failure. Various experiments are carried on 18650 cylindrical cells (NCA chemistry) under custom designed fume hood. The setup captures the failure modes of battery cell. The loading conditions have been designed considering the very possible physical conditions during crash event. The study has been done for radial compression, semicircular indentation, hemispherical indentation, flat circular indentation and case of three-point bending.
Technical Paper

Brake Groan Noise Investigation and Optimization Strategies for Passenger Vehicles

2021-09-22
2021-26-0301
Groan is a low frequency noise generated when moderate brake pressure is applied between the surfaces of the brake disc and the brake pad at a low-speed condition. Brake groan is often very intense and can cause large numbers of customer complaints. During a groan noise event, vehicle structure and suspension components are excited by the brake system and result in a violent event that can be heard and felt during brake application. The cause of noise is friction variation of stick-slip phenomenon between friction material and disc. Creep groan is the structure-borne noise that is related to dynamic characteristic of the vehicle. However, it has been mainly improved through friction material modifications in the past. In this paper, transfer path of creep groan noise was analyzed by means TPA and structural countermeasure to creep groan noise was suggested. This paper discusses the approach for prediction and mitigation of brake groan noise for passenger vehicles having disc brakes.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Technical Paper

Model Order Reduction Technique to Aid Control System Design

2021-09-22
2021-26-0347
Design of real time active controls for structural dynamics problems requires a very precise mathematical model, to closely determine the system dynamic behavior, under virtual simulation. The finite element models can somehow be used as a mathematical model but due to complex shape/structure of the component, the size of discrete models resulting from finite element analysis is usually very large, causing the virtual simulation to be extremely computationally intensive and time consuming, also the boundary conditions applied are not very scalable, making the system deviate from its real dynamic behavior. Thus, this paper deals with the design of a Model Order Reduction technique, using orthogonal decomposition of system matrices, which can be used for creating accurate low-order dynamic model with scalable boundary conditions.
Technical Paper

Smart and Compact Simulation Tool for Electric Vehicle Component Sizing

2021-09-22
2021-26-0419
Electric Vehicles (EVs), with its inherent advantage of zero tailpipe emissions, are gaining importance because of aggressive push from government not only to reduce air pollution but also to reduce dependency of fossil fuel. EVs and necessary charging infrastructure along with ‘connected’ technology is redefining mobility. Considering the fast growing EV market, it becomes important for an EV Powertrain Architect to design and develop a powertrain solution having low engineering efforts and satisfying business, market and regulatory requirements at a competitive price. This paper presents a compact, flexible, convenient and smart featured simulation tool for an EV Powertrain Architect for estimating the specifications of key powertrain components such as traction battery and electric motor. The proposed tool takes into consideration the end-user as well as the regulatory requirements of range, maximum speed, acceleration and gradeability.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Journal Article

Development of Multi Cylinder Turbocharged Natural Gas Engine for Heavy Duty Application

2017-01-10
2017-26-0065
CNG has recently seen increased penetration within the automotive industry. Due to recent sanctions on diesel fuelled vehicles, manufactures have again shifted their attention to natural gas as a suitable alternative. Turbocharging of SI engines has seen widespread application due to its benefit in terms of engine downsizing and increasing engine performance [1]. This paper discusses the methodology involved in development of a multi cylinder turbocharged natural gas engine from an existing diesel engine. Various parameters such as valve timing, intake volume, runner length, etc. were studied using 1D simulation tool GT power and based on their results an optimized configuration was selected and a proto engine was built. Electronic throttle body was used to give better transient performance and emission control. Turbocharger selection and its location plays a critical role.
Technical Paper

Enhancing Productivity in Design by Front Loading and Simultaneous Engineering Using CAD Morphing

2020-04-14
2020-01-0496
Automotive OEMs are launching multiple products with ever reducing development time, balancing costs, quality and time to market, with clear focus on performance and weight. Platform architecture concepts, modular designs for differentiation etc. are strategies adopted by automotive OEMs towards shorter development cycles. Thus, concept generation phase of the digital product development process is expected to enable generation and evaluation of multiple concept architectures, carry out performance studies and largely focus on optimization, upfront. This Front loading of engineering and call for simultaneous engineering requires support in terms of quick and good CAD modeling with maturity. This paper proposes a process that focuses on generation and evaluation of multiple concepts, besides enabling optimization of concept before the detailed design phase kicks in.
Journal Article

Front Under Run Protection Device Strength Test Certification Through FE Simulations

2011-04-12
2011-01-0529
Passive safety regulations specify minimum safety performance requirements of vehicle in terms of protecting its occupants and other road users in accident scenarios. Currently for majority cases, the compliance of vehicle design to passive safety regulations is assessed through physical testing. With increased number of products and more comprehensive passive safety requirements, the complexity of certification is getting challenged due to high cost involved in prototype parts and the market pressures for early product introduction through reduced product development timelines. One of the ways for addressing this challenge is to promote CAE based certification of vehicle designs for regulatory compliance. Since accuracy of CAE predictions have improved over a period of time, such an approach is accepted for few regulations like ECE-R 66/01, AIS069 etc which involves only loadings of the structures.
Journal Article

A Case Study of Reaction Time Reduction of Vehicle Brake System

2011-09-18
2011-01-2379
There has to be a good co-relation/ relationship between the pedal effort applied, pedal travel, deceleration level achieved and stopping distance for “good brake feel”. Brake feel also depend upon the time lag between the force applied on brake pedal and the response of braking system. Hence “brake feel” can be improved by reducing the response time of the brake system. Many vehicles are having “poor brake feel” complaints, pertaining to the above mentioned reasons. This paper relates to an improved brake system for automobile in which reduction in reaction time was done by artificially increasing differential pressure head across vacuum booster diaphragm. Brake booster is given an input of compressed air to the valve body during actuation, thereby increasing the differential pressure across the diaphragm. The compressed air is bled from turbocharger-intercooler of the vehicle which is stored in a reservoir, with one way valve, while cruising.
Technical Paper

Process Modelling of Aluminium Propeller Shaft by Integrated Computational Materials Engineering Approach

2021-09-22
2021-26-0374
An excellent physical and mechanical property makes Aluminium (Al) alloy suitable alternative lightweight materials against steel and cast iron in automotive components. ICME is a computational tool, which integrates the materials information to engineering product performance analysis. MatCalc is ICME tool, which follows the chain rule of process, microstructure, property and performance relationship in materials development. This paper reports the development of Al 6061-T6 propeller shaft through forging process and the materials and process model of the Al yoke is simulated using MatCalc simulation software. Finite element analysis method is used for designing of Al 6061-T6 propeller shaft. The forged Al yoke is solutionized at temperature 550°C for 1 hr followed by artificial ageing at temperature 180°C for 16 hrs to improve the hardness and strength of the yoke.
Technical Paper

Application of CFD Methodology to Reduce the Pressure Drop and Water Entry in the Air Intake System of Turbocharged Engine

2008-04-14
2008-01-1172
When an automobile negotiates a flooded region, water is splashed due to the rotational motion of the wheels. This water enters the air intake system of the turbocharged intercooled engine along with air and can pass through the turbocharger, intercooler and enter the engine. As water is an incompressible fluid, the piston cannot compress water inside the cylinder which leads to connecting rod bending and severe engine damage. This paper explains how the same has been resolved using CFD methodology and proposes the re-designed model of mud cover as a solution to this problem. The entire process has been streamlined and major time and cost reduction achieved by using simulation for optimization. The simulated results have been validated by extensive trials for correlation and outdoor tests for durability. Same analysis technique is used as a template to modify the air intake system.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

Development of Exhaust Silencer for Improved Sound Quality and Optimum Back Pressure

2010-04-12
2010-01-0388
For an automotive exhaust system, noise level and back pressure are the most important parameters for passenger comfort and engine performance respectively. The sound quality perception of the existing silencer design was unacceptable, although the back pressure measured was below the target limit. To improve the existing design, few concepts were prepared by changing the internal elements of silencer only. The design constraints were the silencer shell dimensions, volume of silencer, inlet pipe and outlet tailpipe positions, which had to be kept same as that of the existing base design. The sound quality signal replaying and synthesizing was performed to define the desired sound quality. The numerical simulation involves 3D computational fluid dynamics (CFD) with appropriate boundary condition having less numerical diffusions to predict the back pressure. The various silencer concepts developed with this preliminary analysis, was then experimentally verified with the numerical data.
X