Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Gasoline Surrogate Fuels for Partially Premixed Combustion, of Toluene Ethanol Reference Fuels

2013-10-14
2013-01-2540
Partially premixed combustion (PPC) is intended to improve fuel efficiency and minimize the engine-out emissions. PPC is known to have the potential to reduce emissions of nitrogen oxides (NOx) and soot, but often at the expense of increased emissions of unburned hydrocarbons (HC) and carbon monoxide (CO). PPC has demonstrated remarkable fuel flexibility and can be operated with a large variety of liquid fuels, ranging from low-octane, high-cetane diesel fuels to high-octane gasolines and alcohols. Several research groups have demonstrated that naphtha fuels provide a beneficial compromise between functional load range and low emissions. To increase the understanding of the influence of individual fuel components typically found in commercial fuels, such as alkenes, aromatics and alcohols, a systematic experimental study of 15 surrogate fuel mixtures of n-heptane, isooctane, toluene and ethanol was performed in a light-duty PPC engine using a design of experiment methodology.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

Comparative Emissions from Natural Gas and Diesel Buses

1995-12-01
952746
Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Typically, the transportable chassis dynamo meter is set up at a local transit agency and the selected buses are tested using the fuel in the vehicle at the time of the test. The dynamometer may be set up to operate indoors or outdoors depending on the space available at the site. Samples of the fuels being used at the site are collected and sent to the laboratory for analysis and this information is then sent together with emissions data to the Alternate Fuels Data Center at the National Renewable Energy Laboratory. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods.
Technical Paper

FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans

1996-05-01
961090
The first round of emissions testing of flexible fuel methanol vehicles from the U.S. federal fleet was completed in 1995. The vehicles tested include 71 flexible fuel M85 1993 Dodge Spirits, 16 flexible fuel 1994 M85 Ford Econoline Vans, and a similar number of standard gasoline Dodge Spirits and E150 Ford Econoline Vans. Results presented include a comparison of regulated exhaust and evaporative emissions and a discussion of the levels of air toxins, and the ozone-forming potential (OFP) of the measured emissions. Three private emissions laboratories tested vehicles taken from the general population of federal fleet vehicles in the Washington D.C., New York City, Detroit, Chicago, and Denver metropolitan regions. Testing followed the standard U.S. Environmental Protection Agency's Federal Test Procedures (FTPs) and detailed fuel changeover procedures as developed in the Auto/Oil Air Quality Improvement Research Program.
Technical Paper

Particulate Characterization Using Five Fuels

1996-05-01
961089
Particulate and regulated gaseous emissions were characterized in a feasibility study for a 1994 Ford Taurus Flexible Fuel Vehicle (FFV) operating on five fuels. The five fuels included Federal Reformulated Gasoline (RFG); 85% fuel grade methanol and 15% gasoline (M85); 85% denatured ethanol and 15% gasoline (E85d); liquefied petroleum gas (LPG) meeting HD-5 specifications; and industry average compressed natural gas (CNG). The vehicle was operated fuel-rich to simulate a vehicle operating condition leading to increased production of particulate matter. This simulation was accomplished by using a universal exhaust gas oxygen sensor (UEGO) in connection with an external controller. Appropriate aftermarket conversion kits involving closed-loop control and adaptive learning capabilities allowed operation on the gaseous fuels. Particulate emissions were characterized by total mass and particle size.
Technical Paper

The Effects of Oxygen-Enriched Intake Air on FFV Exhaust Emissions Using M85

1996-05-01
961171
This paper presents the results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85, and supplied with oxygen-enriched intake air containing nominal 21%, 23%, and 25% oxygen (by volume). Emission data were collected by following the standard federal test procedure (FTP) and U.S. Environmental Protection Agency's (EPA's) “off-cycle” test EPA-REP05. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the oxygen content of the intake air was either 23% or 25%. However, CO emissions did not vary appreciably, and NOx emissions were higher. Formaldehyde emissions were reduced by about 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle when 25% oxygen-enriched intake air was used.
Technical Paper

Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter

2000-06-19
2000-01-1876
This paper reports the test results from the DPF (diesel particulate filter) portion of the DECSE (Diesel Emission Control - Sulfur Effects) Phase 1 test program. The DECSE program is a joint government and industry program to study the impact of diesel fuel sulfur level on aftertreatment devices. A systematic investigation was conducted to study the effects of diesel fuel sulfur level on (1) the emissions performance and (2) the regeneration behavior of a continuously regenerating diesel particulate filter and a catalyzed diesel particulate filter. The tests were conducted on a Caterpillar 3126 engine with nominal fuel sulfur levels of 3 parts per million (ppm), 30 ppm, 150 ppm and 350 ppm.
Technical Paper

Low Emission and Fuel Consumption Natural Gas Engines with High Power Density for Stationary and Heavy-Duty Application

1999-08-17
1999-01-2896
Today, natural gas engines for stationary and vehicular applications are not only faced with stringent emission legislation, but also with increasing requirements for power density and efficient fuel consumption. For vehicular use, downsizing is an advantageous approach to lowering on-road fuel consumption and making gas engines more competitive with their diesel counterparts. In SI-engines, the power density at a given compression ratio is limited by knocking, or NOx emissions. A decrease in compression ratio, lowering both NOx emissions and the risk of knocking combustion, increases fuel consumption. An increase in air-fuel-ratio, required to avoid knocking at higher thermal loading, increases boost pressure, HC and CO emissions, and mechanical loading and causes the danger of misfiring. As a result, the performance of the latest production gas engines for vehicles remains at a BMEP of 18…20 bar with a NOx emission level of 2…5 g/kWh.
X