Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effect of Hydrogen Fraction on Laminar Flame Characteristics of Methanol-Hydrogen-Air Mixture at Atmospheric Pressure

2017-10-08
2017-01-2277
Methanol has been regarded as a potential transportation fuel due to its advanced combustion characteristics and flexible source. However, it is suffering from misfire and high HC emissions problems under cold start and low load conditions either on methanol SI engine or on methanol/diesel dual fuel engine. Hydrogen is a potential addition that can enhance the combustion of methanol due to its high flammability and combustion stability. In the current work, the effect of hydrogen fraction on the laminar flame characteristics of methanol- hydrogen-air mixture under varied equivalence ratio was investigated on a constant volume combustion chamber system coupled with a schlieren setup. Experiments were performed over a wide range of equivalence ratio of the premixed charge, varied from 0.8 to 1.4, as well as different hydrogen fraction, 0%, 5%, 10%, 15% and 20% (n/n). All tests were carried out at fixed temperature and pressure of 400K and 0.1MPa.
Technical Paper

The Effects of Ethanol-Butanol Ratio on the Droplet Behavior During Impact onto a Heated Surface

2017-10-08
2017-01-2289
Droplets impacting onto the heated surface is a typical phenomenon either in CI engines or in GDI SI engines, which is regarded significant for their air-fuel mixing. Meanwhile, alcohols including ethanol and butanol, has been widely studied as internal combustion engine alternative fuels due to their excellent properties. In this paper, under different component ratio conditions, the ethanol-butanol droplet impacting onto the heated aluminum surface has been studied experimentally. The falling height of the droplets were set at 5cm. A high-speed camera, set at 512×512pixels, 5000 fps and 20 μs of exposure time, was used to visualize the droplet behavior impinging onto the hot aluminum surface. The impact regimes of the binary droplet were identified. The result showed that the Leidenfrost temperature of droplets was affected by the ratio of ethanol to butanol. The higher the content of butanol in the droplet, the higher the Leidenfrost temperature.
Technical Paper

Effect of Ethanol Addition on Soot Formation of Gasoline in Laminar Diffusion Flames

2017-10-08
2017-01-2396
Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
X