Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Computer Model to Predict Aortic Rupture Due to Impact Loading

2001-11-01
2001-22-0007
Aortic injuries during blunt thoracic impacts can lead to life threatening hemorrhagic shock and potential exsanguination. Experimental approaches designed to study the mechanism of aortic rupture such as the testing of cadavers is not only expensive and time consuming, but has also been relatively unsuccessful. The objective of this study was to develop a computer model and to use it to predict modes of loading that are most likely to produce aortic ruptures. Previously, a 3D finite element model of the human thorax was developed and validated against data obtained from lateral pendulum tests. The model included a detailed description of the heart, lungs, rib cage, sternum, spine, diaphragm, major blood vessels and intercostal muscles. However, the aorta was modeled as a hollow tube using shell elements with no fluid within, and its material properties were assumed to be linear and isotropic.
Technical Paper

Lower Limb: Advanced FE Model and New Experimental Data

2001-11-01
2001-22-0022
The Lower Limb Model for Safety (LLMS) is a finite element model of the lower limb developed mainly for safety applications. It is based on a detailed description of the lower limb anatomy derived from CT and MRI scans collected on a subject close to a 50th percentile male. The main anatomical structures from ankle to hip (excluding the hip) were all modeled with deformable elements. The modeling of the foot and ankle region was based on a previous model Beillas et al. (1999) that has been modified. The global validation of the LLMS focused on the response of the isolated lower leg to axial loading, the response of the isolated knee to frontal and lateral impact, and the interaction of the whole model with a Hybrid III model in a sled environment, for a total of nine different set-ups. In order to better characterize the axial behavior of the lower leg, experiments conducted on cadaveric tibia and foot were reanalyzed and experimental corridors were proposed.
X