Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Integrated Safety Management System

2009-11-10
2009-01-3171
The Safety Management System requires a structured Risk Management Process to be effective. In the technical fields where numerous potentially catastrophic risks exist, processes and procedures need to account not only for the hardware random failures but also of human errors. The technology has progressed to the point where the predominant safety risks are not so much the machine failures but that of the human interaction. Accidents are rarely the result of a single cause but of a number of latent contributing factors that when combined result in the accident. In the Aerospace industry, the operational risk to the fleet is assessed by the manufacturer and the operator independently and is used in safety and/or regulatory decision-making.
Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

2013-09-17
2013-01-2198
Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Journal Article

Defining Environmental Indicators at Detail Design Stage as Part of an Ecodesign Strategy

2013-09-17
2013-01-2276
Implementing Design for Environment (DfE) into the design process requires a strategic integration. Furthermore, as DfE is continuously evolving, flexible processes need to be implemented. This article focuses on the integration of DfE into an optimization framework with the objective of influencing next-generation aircraft. For this purpose, DfE and Structures groups are developing together a set of new environmental indicators covering all life cycle stages of the product by coupling a list of yes/no questions with an environmental matrix. The following indicators are calculated: Regulation risk, Impact of manufacturing the part, CO2 emissions and Recyclability potential. These indicators will be used as constraints in the multi-disciplinary design optimization (MDO) framework, meaning that the structure will be designed while complying with environmental targets and anticipating future regulation changes.
Journal Article

CATIA V5-Based Parametric Aircraft Geometry Modeler

2013-09-17
2013-01-2321
Current transport aircraft are mature systems, thus require increased fidelity at the beginning of the design process to allow further optimization. Furthermore, a desire exists to explore unconventional aircraft configurations at the conceptual level. This has motivated the development of a tool which effectively manages the trade-off between high-fidelity levels, flexibility and short turn-around times. This paper presents a CATIA V5-based parametric aircraft geometry modeler developed by Bombardier Aerospace. The aim of the tool is to provide consistent high-fidelity geometric data early in the conceptual aircraft design process. The intended near-term use of the modeler is two-fold: during the early design phase, the modeler computes geometric data such as areas, volumes, ESDU aircraft parameters, etc. In the competitive analysis domain, the tool provides a high-quality three-dimensional model with manageable effort.
Journal Article

Towards Standardising Methods for Reporting the Embodied Energy Content of Aerospace Products

2017-08-29
2017-01-9002
Within the aerospace industry there is a growing interest in evaluating and reducing the environmental impacts of products and related risks to business. Consequently, requests from governments, customers, manufacturers, and other interested stakeholders, for environmental information about aerospace products are becoming widespread. Presently, requests are inconsistent and this limits the ability of the aerospace industry to meet the informational needs of various stakeholders and reduce the environmental impacts of their products in a cost-effective manner. Energy consumption is a significant business cost, risk, and a simple proxy value for overall environmental impact. This paper presents the initial research carried out by an academic and industry consortium to develop standardised methods for calculating and reporting the embodied manufacturing energy content of aerospace products.
Journal Article

Reliability Modeling Approach and Hydraulic Actuators Designed Hinge-Moment Capability

2013-09-17
2013-01-2232
The hydraulic actuators are used to power flight control surfaces of the aircraft and to ensure surface movement. A system of two or three actuators is usually designed depending on the surface and intuitively these actuators are considered as a redundant architecture from a reliability and functionality point of view. The proper reliability modeling of the system of actuators must consider the system's functionality and design constraints for the remaining available actuator hinge-moment in the event of a partial or total actuator failure. As a result, this will affect the reliability assessment of that design. Furthermore, this system of actuators is also designed to provide a second function involving an assurance of the surface stiffness and damping. Generally, this second function does not require necessarily the same number of available actuators in order to be fully provided.
Journal Article

Reliability Improvement of Lithium Cells Using Laser Welding Process with Design of Experiments

2013-09-17
2013-01-2201
Manufacturing operations introduce unreliability into hardware that is not ordinarily accounted for by reliability design engineering efforts. Inspections and test procedures normally interwoven into fabrication processes are imperfect, and allow defects to escape which later result in field failures. Therefore, if the reliability that is designed and developed into an equipment/system is to be achieved, efforts must be applied during production to insure that reliability is built into the hardware. There are various ways to improve the reliability of a product. These include: Simplification Stress reduction/strength enhancement Design Improvement Using higher quality components Environmental Stress Screening before shipment Process Improvements, etc. This paper concentrates on ‘Manufacturing Process Improvement’ effort through the use of design of experiments, (DOE). Hence, improved levels of reliability can be achieved.
Technical Paper

Aircraft Safety Monitoring and Assessment Practices

2001-09-11
2001-01-2639
Aircraft systems are designed with reliability, safety and cost effectiveness in mind. The certification of the aircraft is based on tests and results of theoretical analyses that show the compliance with the FAR/JAR requirements. Monitoring for safety for in-service aircraft is an important, critical and extremely complex process. The ultimate objective is to assure that the safety level is equal to the original estimate or better. The manufacturer of the aircraft is particularly responsible for overall monitoring and assessment of all safety related events and corrective actions. Many different philosophies were adopted for this purpose. The safety monitoring and audit strategy is generally based on experience, engineering judgment, event analysis and numerical quantification by using probability theory and statistical tools. The aircraft sequential entry in the service and the aging of their components lead to the non-homogeneity of the fleet.
Technical Paper

Design of a Human-Powered Aircraft Applying Multidisciplinary Optimization Method

2013-09-17
2013-01-2318
A particular field of aerospace engineering is dedicated to the study of aircraft that are so energetically efficient, that the power produced by a human being enables it to takeoff and maintain sustained flight without any external or stored energy. These aircraft are known as Human-Powered Aircraft (HPA). The objective of the present work is to design a single-seat HPA applying multidisciplinary optimization techniques with an objective function that minimizes both the power required and the stall speed, representing respectively, an easier and safer aircraft to fly. In the first stage, a parametric synthesis model is created to generate random aircraft and assess their aerodynamic(utilizing a 3D vortex lattice method code and a component drag buildup method for the drag polar), stability and control(utilizing static stability criteria), weight (estimated using historical data) and performance (using the thus calculated data) characteristics.
Technical Paper

Considerations on the Use of Hydrophobic, Superhydrophobic or Icephobic Coatings as a Part of the Aircraft Ice Protection System

2013-09-17
2013-01-2108
Ice adhesion on critical aircraft surfaces is a serious potential hazard that runs the risk of causing accidents. For this reason aircraft are equipped with active ice protection systems (AIPS). AIPS increase fuel consumption and add complexity to the aircraft systems. Reducing energy consumption of the AIPS or replacing the AIPS by a Passive Ice Protection System (PIPS), could significantly reduce aircraft fuel consumption. New coatings with superhydrophobic properties have been developed to reduce water adherence to surfaces. Superhydrophobic coatings can also reduce ice adhesion on surfaces and are used as icephobic coatings. The question is whether superhydrophobic or icephobic coatings would be able to reduce the cost associated with AIPS.
Technical Paper

An Electrical Load Estimation Tool for Aircraft Conceptual Design

2013-09-17
2013-01-2206
During the development of an aircraft, a comprehensive understanding of the electrical load profile is essential to properly estimate the required electrical power to be generated and distributed by the electrical system, also known as EPGDS - Electrical Power Generation and Distribution System. By sizing the EPGDS early in the development process, system parameters like weight and volume can be estimated and applied to the multidisciplinary design optimization process, in search for optimized design solutions at the conceptual aircraft level when developing integrated aircraft systems. With this in mind, a methodology was developed to estimate the amount of electrical power required by the aircraft systems during a typical mission flight cycle.
Technical Paper

A Robust Iterative Displacement Inspection Algorithm for Quality Control of Aerospace Non-Rigid Parts without Conformation Jig

2013-09-17
2013-01-2173
Nowadays, optimization of manufacturing and assembly operations requires taking into account the inherent processes variations. Geometric and dimensional metrology of mechanical parts is very crucial for the aerospace industry and contributes greatly to its. In a free-state condition, non-rigid parts (or compliant parts) may have a significant different shape than their nominal geometry (CAD model) due to gravity loads and residual stress. Typically, the quality control of such parts requires a special approach where expensive and specialized fixtures are needed to constrain dedicated and follow the component during the inspection. Inspecting these parts without jig will have significant economic impacts for aerospace industries, reducing delays and the cost of product quality inspection. The Iterative Displacement Inspection (IDI) algorithm has been developed to deal with this problem.
Technical Paper

Integrated Reliability and Safety Education Program

2013-09-17
2013-01-2121
The safe operation of technical systems is a mandatory basic requirement for the entire industry. However, there are specific industries where the safety of operation is critical and is considered as a required characteristic. These types of industries include the aerospace, military, civil aviation, nuclear power, as well as chemical and automotive industries. Safety is everyone's responsibility but engineering plays the most important role in the course of achieving a safe product operation. There are two specific phases of the product life cycle where the safety characteristics should be addressed by engineering activities: the design and development and operation phases. Modern engineering education is oriented to provide future engineers with a sufficient background to be able to Conceive-Design-Implement-Operate.
Technical Paper

Efficient 3D Artificial Ice Shapes Simulations with 2D Ice Accretion Codes using a 3-Level Correction

2013-09-17
2013-01-2136
3D ice accretion codes have been available for a few decades but, depending on the specific application, their use may be cumbersome, time consuming and requiring a great deal of expertise in using the code. In particular, simulations of large 3D glaze ice accretions using multiple layers of ice is a very challenging and time consuming task. There are several reasons why 2D icing simulations tools are still widely used in the aircraft industry to produce realistic glaze ice shapes. 2D codes are very fast and robust, with a very short turn-around time. They produce adequate results in areas of the aircraft where 3D effects on airflow or droplets concentration can be neglected. Their use can be extended to other areas of the aircraft if relevant 3D effects can be taken into account. This paper proposes a simulation methodology that includes three levels of corrections to extend the use of 2D icing codes to most of the aircraft surfaces.
Journal Article

Aircraft Structure Paint Thickness and Lightning Swept Stroke Damages

2013-09-17
2013-01-2135
During its flight an aircraft can be struck by lightning and the induced high current will require a highly conductive airframe skin structure in order for it to propagate through with minimum damage. However an aircraft skin is generally coated with paint and the airframer does not always have control on the paint thickness. Paint thickness generates heightened concerns for lightning strike on aircraft, mainly because most of coatings dedicated to that purpose are non-conductive. Using insulating material or non-conductive coating with certain thickness may contribute to or increase damage inflicted by the swept stroke lightning energy, even on metallic structures Due to its high relative permittivity, a non-conductive paint or coating on a fuselage skin surface will contribute to slow down the lightning current propagation through structure. With this comes the risk of increasing heat that will favor structural damage and possible melt through.
Technical Paper

Maintenance Action Based on the Time Dependent Failure Rate for Safety–Critical Components

2003-09-08
2003-01-2984
The aircraft components' lifetime is a key decision–making metric for the performance of safety–critical items. The piece–part degradation and age–related changes are critical from the perspective of design and continued airworthiness. The most obvious issue during design development is to establish the need for planned replacement for components that are known to have a limited life. During investigation of an airworthiness issue, it is necessary to determine if the anomaly is time–dependent. If it is, then the anticipated failure probability as a function of time must be estimated such that a decision regarding corrective action can be made. For both cases, an analysis must be performed to determine if and when planned replacement is necessary. Because unanticipated retrofits are costly and difficult, credible and accurate lifetime prediction is essential.
X