Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Application of Concentric Cam Shafts to a Passenger Car Diesel Engine to Significantly Improve the NOx /Soot Tradeoff

2011-09-11
2011-24-0134
Trying to improve the modern diesel engine's NOx/soot tradeoff without giving up fuel economy continues to be a core target for the engine development community. One of the options not yet fully investigated for the diesel is applying variable valve events to the engine breathing process. Already used in some heavy-duty applications, late intake valve closing has long been regarded as a possible strategy for small diesel engines. Single-cylinder tests applying fully variable valve events have demonstrated potential but also raised doubts about VVA benefits on automotive size diesel engines. Full engine testing using realistic valve train technology is seen as key to judging its true performance because it covers not only combustion benefits but also influences like engine pumping on emissions and CO₂. Different to past publications, this paper focuses on testing a production feasible variable valve train technology on a fully instrumented modern Common Rail diesel engine.
Journal Article

Valve-Event Modulated Boost System: Fuel Consumption and Performance with Scavenge-Sourced EGR

2012-04-16
2012-01-0705
In our introductory paper on the VEMB system (SAE 2010-01-1222) we discussed the concept of a divided exhaust period turbocharging system controlled by a concentric cam system, and we presented several fixed speed/load point sets of results that demonstrated the expected BSFC benefits. The BSFC reductions (2.5% to 4%) correlated to reduction in pumping work and to improvement in combustion phasing at knock-limited points from substantial reductions in Residual Gas Fraction compared to the conventionally-boosted baseline engine. In this paper we present additional results from engine tests in the areas of full-load performance and emissions with and without Scavenge-sourced EGR. To demonstrate the WOT performance potential of a VEMB engine, we show the effect of turbocharger matching steps, with results that exceed the baseline engine output across the engine speed range.
Journal Article

Variable Intake Cam Duration Technologies for Improved Fuel Economy

2012-09-10
2012-01-1641
Using a 3 liter, 4 valves per cylinder, V6 Diesel engine model, this study investigates late intake valve closing (LIVC) time in an effort to reduce the fuel consumption of the engine. Two different intake cam duration technologies for diesel engines are evaluated using a 1-D engine simulation software code. The first method utilized for duration control delays the effective closing of the intake valve by moving one intake cam lobe with respect to the other baseline intake cam lobe. In the second method, the closing of both intake valves is delayed by the introduction of an adjustable dwell period during the closing portion of the valve motion. During this mid-lift dwell period, the lift is held at a constant value until it goes into the closing phase. The systems are evaluated and compared at 4 operating points of varying engine speed and load. At each operating point, while engine load is held constant, intake valve closing time is varied.
Technical Paper

Coupled Thermal-Engine Simulation for a Light Duty Application

2010-04-12
2010-01-0806
The thermal management of vehicles has increased in importance due to the significant role of friction and auxiliary losses in engine operation on CO2 emissions. To evaluate different system and component concepts regarding their influence on fuel consumption, simulation offers a wide range of opportunities. In this paper a fully integrated model is presented utilizing the GT-Suite commercial code. It contains a diesel engine system model, a cooling circuit including a simplified model for the cooler package in the vehicle front end and a vehicle model. The purpose of this model is the investigation of cooling system components and control strategies with different engine inputs. A significant run time advantage is achieved by using a mean value engine model, which has a reduced number of input parameters. The simulation using the integrated model can be carried out within an acceptable time frame which enables vehicle drive cycle analysis.
Technical Paper

Air System Management to Improve a Diesel Engine

2011-08-30
2011-01-1829
The paper presents the structure of an air system controller and its application to a modern boosted dual loop EGR Diesel engine. Results over a U.S. FTP cycle which show improvements in emissions and fuel consumption with future opportunities for increased performance are discussed. A recent application of the controller is also shown where standard engine sensors are eliminated to reduce cost and their function is replaced with in-cylinder pressure measurement combined with signal processing techniques.
X