Refine Your Search

Topic

Author

Affiliation

Search Results

Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Modeling the Effects of the Ignition System on the CCV of Ultra-Lean SI Engines using a CFD RANS Approach

2021-09-21
2021-01-1147
Cycle-To-Cycle Variability (CCV) must be properly considered when modeling the ignition process in SI engines operating with ultra-lean mixtures. In this work, a strategy to model the impact of the ignition type on the CCV was developed using the RANS approach for turbulence modelling, performing multi-cycle simulations for the power-cycle only. The spark-discharge was modelled through a set of Lagrangian particles, introduced along the sparkgap and interacting with the surrounding Eulerian gas flow. Then, at each discharge event, the velocity of each particle was modified with a zero-divergence perturbation of the velocity field with respect to average conditions. Finally, the particles velocity was evolved according to the Simplified Langevin Model (SLM), which keeps memory of the initial perturbation and applies a Wiener process to simulate the stochastic interaction of each channel particle with the surrounding gas flow.
Journal Article

The Effects of Cylinder Deactivation on the Thermal Behaviour and Performance of a Three Cylinder Spark Ignition Engine

2016-10-17
2016-01-2160
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
Technical Paper

Brake Power Availability Led Optimisation of P0 versus P2 48V Hybrid Powertrain Architectures

2020-04-14
2020-01-0439
Through improving the 48V hybrid vehicle archetype, governmental emission targets could be more easily met without incurring the high costs associated with increasing levels of electrification. The braking energy recovery function of hybrid vehicles is recognised as an effective solution to reduce emissions and fuel consumption in the short to medium term. The aim of this study was to evaluate methods to maximise the braking energy recovery capability of the 48V hybrid electric vehicle over pre-selected drive cycles using appropriately sized electrified components. The strategy adopted was based upon optimising the battery chemistry type via specific power capability, so that overall brake power is equal to the maximum battery charging power in a typical medium-sized passenger car under typical driving. This will maximise the regenerative braking energy whilst providing a larger torque assistance for a lower battery capacity.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

CFD Modeling of Gas-Fuel Interaction and Mixture Formation in a Gasoline Direct-Injection Engine Coupled With the ECN Spray G Injector

2020-04-14
2020-01-0327
The thorough understanding of the effects due to the fuel direct injection process in modern gasoline direct injection engines has become a mandatory task to meet the most demanding regulations in terms of pollutant emissions. Within this context, computational fluid dynamics proves to be a powerful tool to investigate how the in-cylinder spray evolution influences the mixture distribution, the soot formation and the wall impingement. In this work, the authors proposed a comprehensive methodology to simulate the air-fuel mixture formation into a gasoline direct injection engine under multiple operating conditions. At first, a suitable set of spray sub-models, implemented into an open-source code, was tested on the Engine Combustion Network Spray G injector operating into a static vessel chamber. Such configuration was chosen as it represents a typical gasoline multi-hole injector, extensively used in modern gasoline direct injection engines.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Journal Article

Investigations of Piston Ring Pack and Skirt Contributions to Motored Engine Friction

2008-04-14
2008-01-1046
An experimental study has been carried out to examine the influence of ring tan load and piston skirt modifications on piston assembly friction under motored engine conditions for initial temperatures of -20, 0 and 30°C and motoring speeds within the range 400 to 2000 rev/min. The study has been carried out using the block, crankshaft and pistons of a 2.4I, 4 cylinder diesel engine with a bore and stroke of 89.9mm and 94.6mm respectively. The pistons examined are typical of current designs for light duty diesels. A range of ring pack and piston skirt modifications have been tested, in each case as part of a complete piston assembly. The first changes produced reductions in fmep of between 5% and 38%. The reduction was due to improved skirt and ring pack designs in equal measure, each giving improvements of up to 20%. From this baseline eliminating the tan load of the piston rings was projected to give a further reduction in fmep of between 10% and 20%.
Journal Article

The Effect of Reducing Compression Ratio on the Work Output and Heat Release Characteristics of a DI Diesel under Cold Start Conditions

2008-04-14
2008-01-1306
An experimental investigation has been carried out to compare the indicated performance and heat release characteristics of a DI diesel engine at compression ratios of 18.4:1 and 15.4:1. The compression ratio was changed by modifying the piston bowl volume; the bore and stroke were unchanged, and the swept volume was nominally 500cc. The engine is a single cylinder variant of modern design which meets Euro 4 emissions requirements. Work output and heat release characteristics for the two compression ratios have been compared at an engine speed of 300 rev/min and test temperatures of 10, -10 and -20°C. A more limited comparison has also been made for higher speeds representative of cold idle at one test temperature (-20°C). The reduction in compression ratio generally produces an increase in peak specific indicated work output at low speeds; this is attributable to a reduction in blowby and heat transfer losses and lower peak rates of heat release increasing cumulative burn.
Journal Article

Pneumatic Regenerative Engine Braking Technology for Buses and Commercial Vehicles

2011-09-13
2011-01-2176
In this paper, a novel cost-effective air hybrid powertrain concept for buses and commercial vehicles, Brunel Regenerative Engine Braking Device (RegenEBD) technology, is presented and its performance during the braking process is analysed using the Ricardo WAVE engine simulation programme. RegenEBD is designed to convert kinetic energy into pneumatic energy in the compressed air saved in an air tank. Its operation is achieved by using a production engine braking device and a proprietary intake system design. During the braking operation, the engine switches from the firing mode to the compressor mode by keeping the intake valves from fully closed throughout the four-strokes by installing the Variable Valve Exhaust Brake (VVEB) device on the intake valves. As a result, the induced air could be compressed through the opening gap of intake valves into the air tank through the modified intake system.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

2011-10-18
2011-01-2639
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Journal Article

Evaluation of Virtual NOx Sensor Models for Off Road Heavy Duty Diesel Engines

2012-04-16
2012-01-0358
NOx and PM are the critical emissions to meet the legislation limits for diesel engines. Often a value for these emissions is needed online for on-board diagnostics, engine control, exhaust aftertreatment control, model-based controller design or model-in-the-loop simulations. Besides the obvious method of measuring these emissions, a sensible alternative is to estimate them with virtual sensors. A lot of literature can be found presenting different modeling approaches for NOx emissions. Some are very close to the physics and the chemical reactions taking place inside the combustion chamber, others are only given by adapting general functions to measurement data. Hence, generally speaking, there is not a certain method which is seen as the solution for modeling emissions. Finding the best model approach is not straightforward and depends on the model application, the available measurement channels and the available data set for calibration.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Journal Article

Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study

2015-09-15
2015-01-2594
Current assembly systems that deal with large, complex structures present a number of challenges with regard to improving operational performance. Specifically, aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways, resulting in a deeply complex process that requires a multi-disciplined team of engineers. The current approach to ramp-up production rate involves building additional main assembly fixtures which require large investment and lead times up to 24 months. Within Airbus Operations Ltd there is a requirement to improve the capacity and flexibility of assembly systems, thereby reducing non-recurring costs and time-to-market. Recent trends to improve manufacturing agility advocate Reconfigurable Assembly Systems (RAS) as a viable solution. Yet, adding reconfigurability to assembly systems further increases both the operational and design complexity.
Journal Article

Implementing Determinate Assembly for the Leading Edge Sub-Assembly of Aircraft Wing Manufacture

2014-09-16
2014-01-2252
The replacement for the current single-aisle aircraft will need to be manufactured at a rate significantly higher that of current production. One way that production rate can be increased is by reducing the processing time for assembly operations. This paper presents research that was applied to the build philosophy of the leading edge of a laminar flow European wing demonstrator. The paper describes the implementation of determinate assembly for the rib to bracket assembly interface. By optimising the diametric and the positional tolerances of the holes on the two bracket types and ribs, determinate assembly was successfully implemented. The bracket to rib interface is now secured with no tooling or post processes other than inserting and tightening the fastener. This will reduce the tooling costs and eliminates the need for local drilling, de-burring and re-assembly of the bracket to rib interface, reducing the cycle time of the operation.
X