Refine Your Search

Topic

Author

Affiliation

Search Results

Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Journal Article

The Lotus Range Extender Engine

2010-10-25
2010-01-2208
The paper discusses the concept, specification and performance of a new, dedicated range extender engine for plug-in series hybrid vehicles conceived and designed by Lotus Engineering. This has been undertaken as part of a consortium project called Limo Green, part-funded by the UK government. The Lotus Range Extender engine has been conceived from the outset specifically as an engine for a plug-in series hybrid vehicle, therefore being free of some of the constraints placed on engines which have to mate to conventional, stepped mechanical transmissions. The paper starts by defining the philosophical difference between an engine for range extension and an engine for a full series hybrid vehicle, a distinction which is important with regard to how much power each type must produce. As part of this, the advantages of the sparkignition engine over the diesel are outlined.
Journal Article

Project Omnivore: A Variable Compression Ratio ATAC 2-Stroke Engine for Ultra-Wide-Range HCCI Operation on a Variety of Fuels

2010-04-12
2010-01-1249
The paper describes the principal features of Omnivore, a spark-ignition-based research engine designed to investigate the possibility of true wide-range HCCI operation on a variety of fossil and renewable liquid fuels. The engine project is part-funded jointly by the United Kingdom's Department for the Environment, Food and Rural Affairs (DEFRA) and the Department of the Environment of Northern Ireland (DoENI). The engineering team includes Lotus Engineering, Jaguar Cars, Orbital Corporation and Queen's University Belfast. The research engine so far constructed is of a typical automotive cylinder capacity and operates on an externally-scavenged version of the two-port Day 2-stroke cycle, utilising both a variable charge trapping mechanism to control both trapped charge and residual concentration and a wide-range variable compression ratio (VCR) mechanism in the cylinder head.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

Multi-Plane Airflow Measurements in the Cylinder of a Tumble Based Engine

2014-10-13
2014-01-2705
The tumble flow in modern spark ignition engines is assuming an evermore important role for fuel guiding, air/fuel mixing and the generation of turbulence kinetic energy to enhance the combustion process. This paper describes results obtained with laser Doppler anemometry in multiple vertical planes in the cylinder of a motored, tumble flow engine and looks at the post processed data in terms of tumble ratios and mean and turbulence kinetic energies. The tumble results indicate very different flow fields in parallel planes lying in the main tumble direction, showing the complex nature of the flows in the cylinder. A simple method of integrating the tumble ratios from the different planes is suggested, leading to a tumble ratio more in line with those expected from an integrated method of measuring tumble, albeit these results are crank angle dependent. The tumble in a perpendicular plane shows unexpected asymmetries and values for the tumble.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Journal Article

Pneumatic Regenerative Engine Braking Technology for Buses and Commercial Vehicles

2011-09-13
2011-01-2176
In this paper, a novel cost-effective air hybrid powertrain concept for buses and commercial vehicles, Brunel Regenerative Engine Braking Device (RegenEBD) technology, is presented and its performance during the braking process is analysed using the Ricardo WAVE engine simulation programme. RegenEBD is designed to convert kinetic energy into pneumatic energy in the compressed air saved in an air tank. Its operation is achieved by using a production engine braking device and a proprietary intake system design. During the braking operation, the engine switches from the firing mode to the compressor mode by keeping the intake valves from fully closed throughout the four-strokes by installing the Variable Valve Exhaust Brake (VVEB) device on the intake valves. As a result, the induced air could be compressed through the opening gap of intake valves into the air tank through the modified intake system.
Technical Paper

Emissions Optimisation by Camshaft Profile Switching

1991-02-01
910838
High engine efficiency and low emissions on spark ignition engines can be achieved with a new camshaft profile switching device. This enables the use of two camshaft profiles for inlet and exhaust that can be switched independent of each other by any engine management input. This paper proposes the use of this device to give an excellent torque curve together with reduced emissions, by selecting from two discrete inlet and exhaust camshaft profiles and timings against engine parameters such as speed, load and temperature.
Journal Article

Iso-Stoichiometric Ternary Blends of Gasoline, Ethanol and Methanol: Investigations into Exhaust Emissions, Blend Properties and Octane Numbers

2012-09-10
2012-01-1586
Iso-stoichiometric ternary blends - in which three-component blends of gasoline, ethanol and methanol are configured to the same stoichiometric air-fuel ratio as an equivalent binary ethanol-gasoline blend - can function as invisible "drop-in" fuels suitable for the existing E85/gasoline flex-fuel vehicle fleet. This has been demonstrated for the two principal means of detecting alcohol content in such vehicles, which are considered to be a virtual, or software-based, sensor, and a physical sensor in the fuel line. Furthermore when using such fuels the tailpipe CO₂ emissions are essentially identical to those found when the vehicle is operated on E85. Because of the fact that methanol can be made from a wider range of feed stocks than ethanol and at a cheaper price, these blends then provide opportunities to improve energy security, to reduce greenhouse gas emissions and to produce a fuel blend which could potentially be cheaper on a cost-per-unit-energy basis than gasoline or diesel.
Technical Paper

Effects of EGR on Heat Release in Diesel Combustion

1998-02-23
980184
The effects of Exhaust Gas Recirculation (EGR) on diesel engine exhaust emissions were isolated and studied in earlier investigations (1,2,3,4,5). This paper analyses the heat release patterns during the combustion process and co-relates the results with the exhaust emissions. The EGR effects considered include the dilution of the inlet charge with CO2 or water vapour, the increase in the inlet charge temperature, and the thermal throttling arising from the use of hot EGR. The use of diluents (CO2 and H2O), which are the principal constituents of EGR, caused an increase in ignition delay and a shift in the location of start of combustion. As a consequence of this shift, the whole combustion process was also shifted further towards the expansion stroke. This resulted in the products of combustion spending shorter periods at high temperatures which lowered the NOx formation rate.
Technical Paper

The Effects on Diesel Combustion and Emissions of Reducing Inlet Charge Mass Due to Thermal Throttling with Hot EGR

1998-02-23
980185
This paper is a complementary to previous investigations by the authors (1,2,3,4) on the different effects of EGR on combustion and emissions in DI diesel engine. In addition to the several effects that cold EGR has on combustion and emissions the application of hot EGR results in increasing the inlet charge temperature, thereby, for naturally aspirated engines, lowering the inlet charge mass due to thermal throttling. An associated consequence of thermal throttling is the reduction in the amount of oxygen in the inlet charge. Uncooled EGR, therefore, affects combustion and emissions in two ways: through the reduction in the inlet charge mass and through the increase in inlet charge temperature. The effect on combustion and emissions of increasing the inlet charge temperature (without reducing the inlet charge mass) has been dealt with in ref. (1).
Technical Paper

Flex-Fuel Vehicle Development to Promote Synthetic Alcohols as the Basis of a Potential Negative-CO2 Energy Economy

2007-08-05
2007-01-3618
The engine of a high performance sports car has been converted to operation on E85, a high alcohol-blend fuel containing nominally 85% ethanol and 15% gasoline by volume. In addition to improving performance, the conversion resulted in significant improvement in full-load thermal efficiency versus operation on gasoline. This engine has been fitted in a test vehicle and made flex-fuel capable, a process which resulted in significant improvements in both vehicle performance and tailpipe CO2 when operating solely on ethanol blends, offering an environmentally-friendly approach to high performance motoring. The present paper describes some of the highlights of the development of the flex-fuel calibration to enable the demonstrator vehicle to operate on any mixture of 95 RON gasoline and E85 in the fuel tank. It also discusses how through detailed development, the vehicle has been made to comply with primary pollutant emissions legislation on any ethanol-gasoline mixture up to E85.
Technical Paper

Exploitation of Energy Resources and Future Automotive Fuels

2007-01-23
2007-01-0034
The future exploitation of global energy resources is currently being hotly debated by politicians and by sections of the scientific community but there is little guidance available in the engineering literature as to the full gamut of options or their viability with respect to fuelling the world's vehicles. In the automotive industry extensive research is being undertaken on the use of alternative fuels in internal combustion engines and on the development of alternative powerplants but often the long-term strategy and sustainability of the energy sources to produce these fuels is not clearly enunciated. The requirement to reduce CO2 emissions in the face of accelerating global warming scenarios and the depletion of fossil-fuel resources has led to the widespread assumption that some form of ‘hydrogen economy’ will prevail; this view is seldom justified or challenged.
Technical Paper

Parametric Study on CAI Combustion in a GDI Engine with an Air-Assisted Injector

2007-04-16
2007-01-0196
Controlled auto-ignition (CAI) combustion and engine performance and emission characteristics have been intensively investigated in a single-cylinder gasoline direct injection (GDI) engine with an air-assisted injector. The CAI combustion was obtained by residual gas trapping. This was achieved by using low-lift short-duration cams and early closing the exhaust valves. Effects of EVC (exhaust valve closure) and IVO (intake valve opening) timings, spark timing, injection timing, coolant temperature, compression ratio, valve lift and duration, on CAI combustion and emissions were investigated experimentally. The results show that the EVC timing, injection timing, compression ratio, valve lift and duration had significant influences on CAI combustion and emissions. Early EVC and injection timing, higher compression ratio and higher valve lift could enhance CAI combustion. IVO timing had minor effect on CAI combustion.
Technical Paper

Alcohol-Based Fuels in High Performance Engines

2007-01-23
2007-01-0056
The paper discusses the use of alcohol fuels in high performance pressure-charged engines such as are typical of the type being developed under the ‘downsizing’ banner. To illustrate this it reports modifications to a supercharged high-speed sports car engine to run on an ethanol-based fuel (ethanol containing 15% gasoline by volume, or ‘E85’). The ability for engines to be able to run on alcohol fuels may become very important in the future from both a global warming viewpoint and that of security of energy supply. Additionally, low-carbon-number alcohol fuels such as ethanol and methanol are attractive alternative fuels because, unlike gaseous fuels, they can be stored relatively easily and the amount of energy that can be contained in the vehicle fuel tank is relatively high (although still less than when using gasoline).
Technical Paper

Investigation into Controlled Auto-Ignition Combustion in a GDI Engine with Single and Split Fuel Injections

2007-04-16
2007-01-0211
A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. The effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process.
Technical Paper

Developing a Fuel Stratification Concept on a Spark Ignition Engines

2007-04-16
2007-01-0476
A fuel stratification concept has been developed in a three-valve twin-spark spark ignition engine. This concept requires that two fuels or fuel components of different octane numbers (ON) be introduced into the cylinder separately through two independent inlet ports. They are then stratified into two regions laterally by a strong tumbling flow and ignited by the spark plug located in each region. This engine can operate in the traditional stratified lean-burn mode at part loads to obtain a good part-load fuel economy as long as one fuel is supplied. At high loads, an improved fuel economy might also be obtained by igniting the low ON fuel first and leaving the high ON fuel in the end gas region to resist knock. This paper gives a detailed description of developing the fuel stratification concept, including optimization of in-cylinder flow, mixture and combustion.
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
X