Refine Your Search

Topic

Author

Affiliation

Search Results

Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Journal Article

On the Premixed Phase Combustion Behavior of JP-8 in a Military Relevant Single Cylinder Diesel Engine

2011-04-12
2011-01-0123
Current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility requirements of the particular ground vehicle in question. In either case, such engines traditionally have been calibrated using North American diesel fuel (DF-2) and Jet Propellant 8 (JP-8) compatibility wasn't given much consideration since any associated power loss due to the lower volumetric energy density was not an issue for most applications at then targeted climatic conditions. Furthermore, since the genesis of the ‘one fuel forward policy’ of using JP-8 as the single battlefield fuel there has been limited experience to truly assess fuel effects on diesel engine combustion systems until this decade.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Technical Paper

OMEx Fuel and RCCI Combustion to Reach Engine-Out Emissions Beyond the Current EURO VI Legislation

2021-09-05
2021-24-0043
Emissions regulations for engine and vehicle manufacturers are bound to become more limiting to prevent greenhouse gas emissions and mitigate the negative effects that potentiate global warming. To fulfill the energy demand necessary in the transportation sector for the short-to-medium term, a parallel optimization of the internal combustion engine, powertrain and fuels is necessary. The combination of novel combustion modes like the reactivity-controlled compression ignition (RCCI), that seeks the benefits of both compression ignition and spark ignition engines, with the so-called e-fuels, that reduce the carbon footprint from well-to-wheel, is worth exploring. This work investigates the potential of the RCCI concept using OMEx-gasoline to reduce the engine-out emissions beyond the current EURO VI legislation. To do so, eight representative operating conditions from several driving cycles for heavy-duty vehicles will be explored experimentally.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

Modeling the Effects of the Ignition System on the CCV of Ultra-Lean SI Engines using a CFD RANS Approach

2021-09-21
2021-01-1147
Cycle-To-Cycle Variability (CCV) must be properly considered when modeling the ignition process in SI engines operating with ultra-lean mixtures. In this work, a strategy to model the impact of the ignition type on the CCV was developed using the RANS approach for turbulence modelling, performing multi-cycle simulations for the power-cycle only. The spark-discharge was modelled through a set of Lagrangian particles, introduced along the sparkgap and interacting with the surrounding Eulerian gas flow. Then, at each discharge event, the velocity of each particle was modified with a zero-divergence perturbation of the velocity field with respect to average conditions. Finally, the particles velocity was evolved according to the Simplified Langevin Model (SLM), which keeps memory of the initial perturbation and applies a Wiener process to simulate the stochastic interaction of each channel particle with the surrounding gas flow.
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Journal Article

Dynamic Downsizing Gasoline Demonstrator

2017-03-28
2017-01-0646
Gasoline engine downsizing is already established as a technology for reducing vehicle CO2 emissions. Further benefits are possible through more aggressive downsizing, however, the tradeoff between the CO2 reduction achieved and vehicle drivability limits the level of engine downsizing currently adopted by vehicle manufacturers. This paper will present the latest results achieved from a very heavily downsized engine, and resulting demonstrator vehicle, featuring eSupercharging in combination with a conventional turbocharger. The original 1.2 litre, 3-cylinder, MAHLE downsizing engine has been re-configured to enable a specific power output in excess of 160 kW/litre. Of key importance is a cost effective, efficient and flexible boosting system.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Journal Article

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

2017-03-28
2017-01-0722
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

Impact of Multiple Injection Strategies on Performance and Emissions of Methanol PPC under Low Load Operation

2020-04-14
2020-01-0556
There is growing global interest in using renewable alcohols to reduce the greenhouse gases and the reliance on conventional fossil fuels. Recent studies show that methanol combined with partially premixed combustion provide clear performance and emission benefits compared to conventional diesel diffusion combustion. Nonetheless, high unburned hydrocarbon (HC) and carbon monoxide (CO) emissions can be stated as the main PPC drawback in light load condition when using high octane fuel such as Methanol with single injection strategy. Thus, the present experimental study has been carried out to investigate the influence of multiple injection strategies on the performance and emissions with methanol fuel in partially premixed combustion. Specifically, the main objective is to reduce HC, CO and simultaneously increase the gross indicated efficiency compared to single injection strategy.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

CFD Modeling of Gas-Fuel Interaction and Mixture Formation in a Gasoline Direct-Injection Engine Coupled With the ECN Spray G Injector

2020-04-14
2020-01-0327
The thorough understanding of the effects due to the fuel direct injection process in modern gasoline direct injection engines has become a mandatory task to meet the most demanding regulations in terms of pollutant emissions. Within this context, computational fluid dynamics proves to be a powerful tool to investigate how the in-cylinder spray evolution influences the mixture distribution, the soot formation and the wall impingement. In this work, the authors proposed a comprehensive methodology to simulate the air-fuel mixture formation into a gasoline direct injection engine under multiple operating conditions. At first, a suitable set of spray sub-models, implemented into an open-source code, was tested on the Engine Combustion Network Spray G injector operating into a static vessel chamber. Such configuration was chosen as it represents a typical gasoline multi-hole injector, extensively used in modern gasoline direct injection engines.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Journal Article

Pneumatic Regenerative Engine Braking Technology for Buses and Commercial Vehicles

2011-09-13
2011-01-2176
In this paper, a novel cost-effective air hybrid powertrain concept for buses and commercial vehicles, Brunel Regenerative Engine Braking Device (RegenEBD) technology, is presented and its performance during the braking process is analysed using the Ricardo WAVE engine simulation programme. RegenEBD is designed to convert kinetic energy into pneumatic energy in the compressed air saved in an air tank. Its operation is achieved by using a production engine braking device and a proprietary intake system design. During the braking operation, the engine switches from the firing mode to the compressor mode by keeping the intake valves from fully closed throughout the four-strokes by installing the Variable Valve Exhaust Brake (VVEB) device on the intake valves. As a result, the induced air could be compressed through the opening gap of intake valves into the air tank through the modified intake system.
X