Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multi-dimensional Simulation of Air/Fuel Premixing and Stratified Combustion in a Gasoline Direct Injection Engine with Combustion Chamber Bowl Offset

2006-11-13
2006-32-0006
A multidimensional numerical simulation method was developed to analyze air/fuel premixing, stratified combustion and NOx emission formation in a gasoline direct injection (GDI) engine. Firstly, many submodels were integrated into one Computational Fluid Dynamics (CFD) code: ICFD-CN, such as Sarre nozzle flow, Kelvin-Helmholtz (KH) dynamic jet model, Taylor-Analogy Breakup (TAB) model, Rayleigh-Taylor (RT) droplet breakup model, Lefebvre fuel vaporization model, Liu droplet drag & distortion model, Gosman turbulence & droplet dispersion model, O'rourke wall film model, O'rourke and Bracco droplet impinging & coalescence model, Stanton spray/wall impinging model, the Discrete Particle Ignition Kernel(DPIK)ignition model, the single step combustion and the patulous Zeldovich model for NOx generation mechanism. The integrated CFD code was then calibrated against experimental data in a gasoline direct injection engine for several engine operating conditions.
Technical Paper

Numerical Simulation of Gas-Particle Two-Phase Flow Characteristic During Deep Bed Filtration Process

2007-04-16
2007-01-1135
A 2-D gas-particle two-phase flow model has been developed to study the flow characteristics in a single channel of a honeycomb ceramic diesel particulate filter. A particle source in cell (PSIC) algorithm is used to calculate the gas-particle two-phase flow. Firstly, the gas-phase flow field alone (without taking into account of the particle-phase) is solved for estimation of gas velocity and pressure fields in the Euler coordinate. Secondly, the particle-phase is added in and particles tracked down in the Lagrange coordinate. Thirdly, the particle source which acts on the gas-phase cell is calculated and added to the gas-phase equations. Fourthly, the gas-phase equations with the particle source are solved again. Lastly, the above process is iterated until the flow field is convergent. Taking the above-mentioned approach, the gas-particle two-phase flow characteristic is simulated using FLUENT. The simulation results are in good agreement with experiment data.
X