Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental Investigation of Fuel Influence on Atomization and Spray Propagation Using an Outwardly Opening GDI-Injector

2010-10-25
2010-01-2275
One fundamental subprocess for the utilization of alternative fuels for automotive applications is the in-cylinder mixture formation and therefore the fuel injection, which largely affects the combustion efficiency of internal combustion engines. This study analyzes the influence of the physical properties of various model-fuels on atomization and spray propagation at temperatures and pressures matching the operating conditions of today's gasoline engines. The experiments were carried out using an outwardly opening, piezo-driven gasoline injector. In order to cover a wide range of potential fuels the following liquids were investigated: Alcohols (Ethanol, Butanol and Decanol), alkanes (Iso-Octane, Dodecane and Heptane) and one furane (Tetrahydrofurfuryl Alcohol). The macroscopic spray propagation of the fuels was investigated using shadowgraphy. For complementary spray characterization droplet sizes and velocities were measured using Phase-Doppler Anemometry.
Technical Paper

Experimental Investigation of Droplet Size and Velocity in Clustered Diesel Sprays under High-Pressure and High-Temperature Conditions

2010-10-25
2010-01-2240
An experimental study on the interaction of sprays from clustered orifices is presented. Droplet size and velocity information has been gained by means of Phase Doppler Anemometry for different nozzle configurations varying the diverging opening angle between clustered sprays from 0° to 15°. These nozzles were investigated under high-pressure (50 bar) and high-temperature (800 K) conditions in a pressure chamber and the results are compared to two standard nozzles with flow rates corresponding either to the flow rate of the cluster nozzle configuration or half of the flow rate of this configuration. Two injection pressures, 600 bar and 1100 bar, were used to investigate all nozzles. This investigation completes the characterization of sprays from the cluster nozzles presented in an earlier work. Findings obtained therein were used to choose the measurement procedure for the present investigation and also to determine the spray width in order to obtain the spray angle.
Technical Paper

Influence of Injection and Ambient Conditions on the Nozzle Exit Spray of an Outwardly Opening GDI Injector

2012-04-16
2012-01-0396
Spray penetration and mixture formation in GDI engines are crucial to a reliable ignition and the subsequent combustion. For the prediction of the mixture formation process, computational fluid dynamic simulations are applied. Therefore, details about the nozzle exit conditions are essential, either as boundary conditions to be set, or to validate the numerical results. This paper presents experimental results on the influence of boundary conditions on the spray structure at the nozzle exit of a GDI injector. The injector investigated is an outwardly opening piezo injector, generating a hollow cone spray with a string structure. The distribution of the strings (the so-called "string structure") is needed for the starting conditions of the computational fluid dynamic simulations, as the origin of the strings is unresolved so far.
Technical Paper

Spray Analysis of C8H18O Fuel Blends Using High-Speed Schlieren Imaging and Mie Scattering

2015-09-06
2015-24-2478
Targeted fuel blending is a known method to improve the performance of an automotive engine. Two candidates for a biofuel blend are the linear C8H18O isomers 1-octanol and di-n-butyl ether (DNBE). Both fuels feature an increased amount of oxygen that reduces soot emissions. However, physical properties of both fuels differ significantly and thus, a different type of spray mixing and combustion is expected: The low reactivity of 1-octanol causes a long ignition delay enabling a better mixture homogenization, but also causes HC and CO emissions. DNBE in contrary is highly volatile, has a short ignition time and thus can act as an ignition booster for 1-octanol without losing positive effects concerning emissions. In this work a spray study is performed for blends of 1-octanol and DNBE. Measurements are conducted under diesel-like engine conditions with an 8-hole piezo injector. High-speed Schlieren and Mie scattering techniques are used for spray visualizations.
Journal Article

Influence of In-Cylinder Air Flow on Spray Propagation

2017-06-29
2017-01-9280
The influence of in-cylinder flow on the propagation of 2-Butanone and Ethanol sprays is studied. To solely evaluate the interaction of air flow and fuel, high-speed Mie-Scattering Imaging of hollow cone sprays is conducted both in a single-cylinder optical engine with tumble movement and in a pressure vessel with negligible air flow. The direct comparison reveals an improved spray propagation of 2-Butanone due to the engine’s air flow. The lower viscosity of 2-Butanone causes an enhanced jet breakup compared to Ethanol such that the spray consists of more and smaller droplets. Small droplets possess a lower momentum, which allows the droplets to be more efficiently transported by the air flow. Consequently, the fuel distribution across the cylinder is enhanced. As the liquid fuel is distributed to a larger volume, improved convection accelerates evaporation.
X