Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

OCP - Materials

2001-03-05
2001-01-1022
Outokumpu Copper Strip AB has developed Copper alloys for use in heat exchanger applications where high temperature joining is employed. The alloys are basically low alloyed Copper and Brass. These alloys are particularly suitable for the brazing of Copper and Brass heat exchangers. For joining purposes an alloy has been developed as brazing filler material. That alloy has properties that give high strength at comparatively low brazing temperatures. All these alloys are being used in the CuproBraze process of manufacturing copper and brass heat exchangers. This paper will explain the properties of these materials and their use.
Technical Paper

CuproBraze Manufacturing - Plant Design - Lock Seam Tubes

2001-03-05
2001-01-1349
This is a short presentation over the differences between soft soldering and the brazing, CuproBraze®, manufacturing techniques. Additional process equipment is described and production principles are explained.
Technical Paper

External Corrosion Resistance of CuproBraze® Radiators

2001-05-14
2001-01-1718
New technology for the manufacturing of copper/brass heat exchangers has been developed and the first automotive radiators are already in operation in vehicles. This new technology is called CuproBraze®. One of the essential questions raised is the external corrosion resistance with reference to the present soldered copper/brass radiators and to the brazed aluminium radiators. Based on the results from electrochemical measurements and from four different types of accelerated corrosion tests, the external corrosion resistance of the CuproBraze® radiators is clearly better than that of the soldered copper/brass radiators and competitive with the brazed aluminum radiators, especially as regards marine atmosphere. Due to the relatively high strength of the CuproBraze® heat exchangers, down gauging of fins and tubes in some applications is attractive. High performance coatings can ensure long lifetime from corrosion point of view, even for thin gauge heat exchangers.
Technical Paper

Interactions Between the Materials in the Tube-Fin-Joints in Brazed Copper-Brass Heat Exchangers

2001-05-14
2001-01-1726
The paper describes the interactions between the filler material and the copper fin in the joint in the CuproBraze® process. Due to the influence of the filler metal, part of the copper fin is alloyed. The influence of the time above the melting point of the filler material and of the maximum process-temperature were investigated. It was found that the time has the strongest influence. After laboratory tests and production scale tests a brazing window for the process has been established. That can be used to set up brazing cycles for different kind of furnaces. From a number of wind tunnel tests it has been confirmed that when the brazing is done within this window the alloying of the fin is limited that it does not have practical influence on the thermal performance of the heat exchanger.
Technical Paper

Development of a Reduced Chemical Mechanism for Combustion of Gasoline-Biofuels

2017-09-04
2017-24-0039
Bio-derived fuels are drawing more and more attention in the internal combustion engine (ICE) research field in recent years. Those interests in use of renewable biofuels in ICE applications derive from energy security issues and, more importantly, from environment pollutant emissions concerns. High fidelity numerical study of engine combustion requires advanced computational fluid dynamics (CFD) to be coupled with detailed chemical kinetic models. This task becomes extremely challenging if real fuels are taken into account, as they include a mixture of hundreds of different hydrocarbons, which prohibitively increases computational cost. Therefore, along with employing surrogate fuel models, reduction of detailed kinetic models for multidimensional engine applications is preferred. In the present work, a reduced mechanism was developed for primary reference fuel (PRF) using the directed relation graph (DRG) approach. The mechanism was generated from an existing detailed mechanism.
Technical Paper

Environmentally Driven Development of New Heat Exchanger Materials

2006-04-03
2006-01-0727
Due to coming more stringent legislation regarding emission of diesel engines, material considerations in heat exchangers will be a topic. This paper describes a method to compare the durability of tube to header joints in brazed, welded or soldered execution at ambient and elevated temperatures. Instead of pressure cycle test a complete heat exchanger only one tube to header joint is tested at a time.. This method could initially be used for selection of materials and joining methods with respect to durability. Calculations are presented to show the analogy between the described test method and internal pressure pulsation. Examples of measured results are presented. By combining different tube and braze filler materials comparing studies can be done.
X