Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of HEV Engine Start-Shock Prediction Technique Combining Motor Generator System Control and Multi-Body Dynamics (MBD) Models

2013-05-13
2013-01-2007
Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model.
Journal Article

Toyota's Integrated Drive Power Control System for Downsized Turbocharged Engine

2015-04-14
2015-01-1636
New engine controls have been developed for the turbocharged Lexus NX200t to improve driving power by reducing engine torque output lag. Drive power management functions have been centralized in an integrated drive power control system. The newly developed controls minimize the potential reduction in drivability associated with the adoption of a turbocharged engine while improving fuel efficiency. General driveability issues commonly associated with a turbocharged engine include sudden increases in drive power due to the response lag of the turbocharger, and higher shifting frequencies if this response lag triggers a disturbed accelerator operation pattern by the driver. The developed technologies detect and control sudden increases in drive power to create the optimum drive power map, and reduce unnecessary shifts even if the driver's accelerator operation is disturbed.
Journal Article

Experimental Demonstration of Smart Charging and Vehicle-to-Home Technologies for Plugin Electric Vehicles Coordinated with Home Energy Management Systems for Automated Demand Response

2016-04-05
2016-01-0160
In this paper, we consider smart charging and vehicle-to-home (V2H) technologies for plugin electric vehicles coordinated with home energy management systems (HEMS) for automated demand response. In this system, plugin electric vehicles automatically react to demand response events with or without HEMS’s coordination, while vehicles are charged and discharged (i.e., V2H) in appropriate time slots by taking into account demand response events, time-ofuse rate information, and users’ vehicle usage plan. We introduce three approaches on home energy management: centralized energy control, distributed energy control, and coordinated energy control. We implemented smart charging and V2H systems by employing two sets of standardized communication protocols: one using OpenADR 2.0b, SEP 2.0, and SAE standards and the other using OpenADR 2.0b, ECHONET Lite, and ISO/IEC 15118.
Journal Article

Combustion Development to Realize High Thermal Efficiency Engines

2016-04-05
2016-01-0693
Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society, and an effective way of accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid vehicles and conventional vehicles in recent years. Cooled EGR has the potential to achieve further lower fuel consumption if the EGR ratio can be increased. Fast combustion is an important and effective way for expanding the EGR ratio. The engine combustion enhancement can be categorized into measures to improve ignition characteristics and methods to promote flame propagation.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Journal Article

Technical Development of Electro Magnetic Compatibility for Plug-in Hybrid Vehicle / Electric Vehicle Using Wireless Power Transfer System

2016-04-05
2016-01-1161
In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
Journal Article

Vibration Torque Interception using Multi-Functional Electromagnetic Coupling in a HEV Drive Line

2016-04-05
2016-01-1181
In the present paper, we introduce a drivetrain system using an electromagnetic coupling for hybrid electric vehicles, and propose a new control concept of vibration torque interception. The electromagnetic coupling is an electric machine that is composed of a pair of rotors, and electromagnetic torque acts mutually between the rotors. In the drivetrain system, the electromagnetic coupling works as a torque transmission device with a rotational-speed-converting function. We demonstrate that, by using this control, the electromagnetic coupling also works as a damping device that intercepts the vibration torque of the internal combustion engine, while transmitting the smooth torque to its drive line. Using a model of a two-inertia resonance system, a control system is designed such that a transfer function representing input-to-output torque is shaped in the frequency domain.
Journal Article

Development of Fracture Model for Laser Screw Welding

2016-04-05
2016-01-1344
This paper describes the development of a fracture finite element (FE) model for laser screw welding (LSW) and validation of the model with experimental results. LSW was developed and introduced to production vehicles by Toyota Motor Corporation in 2013. LSW offers superb advantages such as increased productivity and short pitch welding. Although the authors had previously developed fracture FE models for conventional resistance spot welding (RSW), a fracture model for LSW has not been developed. To develop this fracture model, many comprehensive experiments were conducted. The results revealed that LSW had twice as many variations in fracture modes compared to RSW. Moreover, fracture mode bifurcations were also found to result from differences in clearance between welded plates. In order to analyze LSW fracture phenomena, detailed FE models using fine hexahedral elements were developed.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Technical Paper

A Study of Mechanism of Engine Idling Rattle Noise in Hybrid Transaxles

2020-04-14
2020-01-0421
Quietness is one of the most important characteristics for Hybrid Electric Vehicle quality. Reduction of the rattle noise caused by the torque fluctuation of an internal combustion engine can contribute to get a customer satisfaction. Toyota Hybrid System(THS) also has same requirement. Especially, the rattle noise during idling may happen discontinuously despite of periodical engine combustion excitation. It is necessary to study the mechanism and reduce the rattle noise. At lower engine torque range, decreasing the torsional damper’s stiffness can improve this condition as the manual transaxle done. However, the rattle noise can occur easily in conditions of relatively large torque spike inputs to the torsional system, such as the engine start/stop function of THS using the motor/generator in the transaxle.
Technical Paper

Analysis of Unburned Hydrocarbon Generated from Wall under Lean Combustion

2020-04-14
2020-01-0295
Combustion of a lean air-fuel mixture diluted with a large amount of air or Exhaust Gas Recirculation (EGR) gas is one of the important technologies that can reduce thermal NOx and improve gasoline engine fuel economy by reducing cooling loss. On the other hand, lean combustion increases unburned Hydro Carbon (HC) and unburned loss compared to stoichiometric combustion. This is because lean combustion reduces the burning rate of the air-fuel mixture and forms a thick quenching layer near the wall surface. In this study, the relationship between the thickness of the unburned HC and the excess air ratio is analyzed using Laser Induced Fluorescence (LIF) method and Computational Fluid Dynamic (CFD) of combustion. The HC distribution near the engine liner when the excess air ratio is increased is investigated by LIF. As a result, it is found that the quenching distance of the flame in the cylinder is larger for lean conditions than the general single-wall quenching relationship.
Technical Paper

Low-Emission and Fuel-Efficient Exhaust System with New Air-Fuel Ratio Sensor

2020-04-14
2020-01-0655
This paper describes an exhaust system using a new air-fuel ratio (hereinafter, A/F) sensor that contributes to low emissions and low fuel consumption of gasoline engines. As the first technical feature, the water splash resistance of the A/F sensor has been substantially improved which allows A/F control to be enabled without delay during engine cold start. To realize this capability, it is important that the sensor characteristics are not affected by the condensed water generated in the exhaust pipe. Therefore, a technique that has the effectiveness of a water splash resistance layer with water repellent function is demonstrated. As the second technical feature, the power consumption of the sensor has been substantially reduced. This is achieved by improving thermal efficiency of the sensor that the element can be activated at a low temperature.
Journal Article

An Application of Model Based Combustion Control to Transient Cycle-by-Cycle Diesel Combustion

2008-04-14
2008-01-1311
From the viewpoint of the global warming restraint, reduction of exhaust emissions from diesel engine is urgent demand. However, it needs further development in combustion control besides after treatment system. Larger amount of EGR (Exhaust Gas Recirculation) is effective to reduce NOx emission. On the other hand, in-cylinder physical conditions greatly influence on self-ignition and combustion process, especially low O2 fraction charged gas owing to excessive EGR causes misfire. A drastic solution for this problem, fuel injection timing should be optimally manipulated based on predicted ignition delay period before actual injection. For this purpose, Toyota has developed a model based diesel combustion control concept to avoid the misfire and to keep low emission combustion includes in transient condition.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

2008-04-14
2008-01-0438
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Journal Article

An Investigation of High Load (Compression Ignition) Operation of the “Naphtha Engine” - a Combustion Strategy for Low Well-to-Wheel CO2 Emissions

2008-06-23
2008-01-1599
A computational and experimental study has been carried out to assess the high load efficiency and emissions potential of a combustion system designed to operate on low octane gasoline (or naphtha). The “naphtha engine” concept utilizes spark ignition at low load, HCCI at intermediate load, and compression ignition at high load; this paper focuses on high load (compression ignition) operation. Experiments were carried out in a single cylinder diesel engine with compression ratio of 16 and a common rail injector/fuel delivery system. Three fuels were examined: a light naphtha (RON∼59, CN∼34), heavy naphtha (RON∼66, CN∼31), and heavy naphtha additized with cetane improver (CN∼40). With single fuel injection near top dead center (TDC) (diesel-like combustion), excessive combustion noise is generated as the load increases. This noise limits the maximum power, in agreement with the CFD predictions. The noise-limited maximum power increases somewhat with the use of single pilot injection.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Journal Article

Combustion Improvement of Diesel Engine by Alcohol Addition - Investigation of Port Injection Method and Blended Fuel Method

2011-04-12
2011-01-0336
Alcohol fuels that can be produced from cellulose continue to become more widely used in gasoline engines. This research investigated the application of alcohol to diesel engines with the aims of improving the combustion of diesel engines and of utilizing alternative fuels. Two methods were compared, a method in which alcohol is injected into the air intake system and a method in which alcohol is blended in advance into the diesel fuel. Alcohol is an oxygenated fuel and so the amount of soot that is emitted is small. Furthermore, blended fuels have characteristics that help promote mixture formation, which can be expected to reduce the amount of soot even more, such as a low cetane number, low viscosity, low surface tension, and a low boiling point. Ethanol has a strong moisture-absorption attribute and separates easily when mixed with diesel fuel. Therefore, 1-butanol was used since it possesses a strong hydrophobic attribute and does not separate easily.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Journal Article

Application of Reference Governor Using Soft Constraints and Steepest Descent Method to Diesel Engine Aftertreatment Temperature Control

2013-04-08
2013-01-0350
This paper considers an application of reference governor (RG) to automotive diesel aftertreatment temperature control. Recently, regulations on vehicle emissions have become more stringent, and engine hardware and software are expected to be more complicated. It is getting more difficult to guarantee constraints in control systems as well as good control performance. Among model-based control methods that can directly treat constraints, this paper focuses on the RG, which has recently attracted a lot of attention as one method of model prediction-based control. In the RG, references in tracking control are modified based on future prediction so that the predicted outputs in a closed-loop system satisfy the constraints. This paper proposes an online RG algorithm, taking account of the real-time implementation on engine embedded controllers.
Journal Article

Development of Ratio Control System for Toyota's New Continuously Variable Transmission

2013-04-08
2013-01-0367
Toyota has developed a new belt-type continuously variable transmission (CVT) for 1.5-liter compact vehicles. To improve both driveability and fuel economy over previous CVTs, pressure management was adopted as the shift control method. The new shift control system was designed using a model-based control method which uses a two-degree-of-freedom system composed of feedback and feedforward controls. Smooth shifting in all the target shift speed regions was realized by combining a feedback loop that considers the output limit of the pulley thrust into the feedforward controller. Furthermore, shift response was improved while maintaining or even improving stability. This paper describes the details of this shift control system.
X