Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Race Motorcycle Smart Wheel

2015-04-14
2015-01-1520
A wheel able to measure the generalized forces at the hub of a race motorcycle has been developed and used. The wheel has a very limited mass. It is made from magnesium with a special structure to sense the forces and provide the required level of stiffness. The wheel has been tested both indoor for preliminary approval and on the track. The three forces and the three moments acting at the hub can be measured with a resolution of 1N and 0.3Nm respectively. A specifically programmed DSP (Digital Signal Processor) embedded in the sensor allows real-time acquisition and processing of the six signals of forces/torques components. The signals are sent via Bluetooth to an onboard receiver connected to the vehicle CAN (Controller Area Network) bus. Each signal is sampled at 200Hz. The wheel can be used to derive the actual tyre characteristics or to record the loads acting at the hub.
Technical Paper

Evolution of the Ride Comfort of Alfa Romeo Cars since 1955 until 2005

2017-03-28
2017-01-1484
The ride comfort of three Alfa Romeo cars, namely Giulietta (1955), Alfetta (1972) and 159 (2005) has been assessed both objectively and subjectively. The three cars belong to the same market segment. The aim is to let young engineers or graduate students understand how technology has evolved and eventually learn a lesson from the assessed trend. A number of cleats have been fixed at the ground and the three cars have traversed such uneven surface. The objective assessment of the ride comfort has been performed by means of accelerometers fixed at the seat rails, additionally a special dummy developed at Politecnico di Milano has been employed. The subjective assessment has been performed by a panel of passengers. The match between objective and subjective ratings is very good. Simple mathematical models have been employed to establish a (successful) comparison between experimental and computational results. The ride comfort differs substantially among the cars.
Technical Paper

Cooperative Connected and Automated Mobility in a Roundabout

2024-04-09
2024-01-2002
Roundabouts are intersections at which automated cars seem currently not performing sufficiently well. Actually, sometimes, they get stuck and the traffic flow is seriously reduced. To overcome this problem a V2N-N2V (vehicle-to-network-network-to-vehicle) communication scheme is proposed. Cars communicate via 5G with an edge computer. A cooperative machine-learning algorithm orchestrates the traffic. Automated cars are instructed to accelerate or decelerate with the triple aim of improving the traffic flow into the roundabout, keeping safety constraints, and providing comfort for passengers on board of automated vehicles. In the roundabout, both automated cars and human-driven cars run. The roundabout scenario has been simulated by SUMO. Additionally, the scenario has been reconstructed into a dynamic driving simulator, with a real human driver in a virtual reality environment. The aim was to check the human perception of traffic flow, driving safety and driving comfort.
X