Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Thermal Balance Test of the EuTEF Payload

2007-07-09
2007-01-3166
This paper describes the Thermal Balance test that has been performed on EuTEF (European Technology Exposure Facility) platform, to be flown in October 2007 as an attached payload of Columbus module to the ISS. The thermal control system of EuTEF is based on a passive concept, with several different payloads being each one a self-standing technological experiment, with a centralized power supply and data handling. Each instrument has its own TCS, independent one another: they are individually insulated by MLI. The test has been performed with EuTEF Flight Model (FM) on the Passive Attach System to have representative thermal flight-like interfaces. Simulation of close-to-real flight environmental heat loads have been accomplished in a vacuum chamber (at INTESPACE, Toulouse-F) by means of a solar beam and a spin table suitably oriented to simulate a critical identified orbit, among all the possible on the ISS.
Technical Paper

A Heat Switch for European Mars Rover

2008-06-29
2008-01-2153
The future Mars rover thermal design presents a unique challenge to the thermal engineers: the need arises for a thermal control system able to keep rover elements within their operational and non-operational temperature ranges in the face of extreme environmental conditions, characterized by broad day/night temperature excursions, cold biased conditions and long periods in standby modes induced by dust storms. A thermal device is needed, which allows the removal of excess heat from dissipating units during the Martian day and to keep them above their minimum operational/survival temperature during night. Moreover the scientific goals introduce strict requirements in terms of allowable internal components temperature ranges and thermal stability, which the candidate device has to fulfill against wide-ranging power dissipation modes. Such a device has been called Variable Thermal Conductance Device, or ‘Heat Switch’.
Technical Paper

Thermal Testing of a Heat Switch for European Mars Rover

2009-07-12
2009-01-2573
A Heat Switch has been developed, namely a device able to autonomously regulate its own thermal conductance in function of the equipment dissipation and environmental heat sink conditions. It is based on a Loop Heat Pipe (LHP) technology, with a passive bypass valve which diverts the flow to the Compensation Chamber when needed for regulation purposes. The target application is the potential use on a Mars Rover thermal control system. The paper recalls the Heat Switch design, and reports the results of an extensive test campaign on the ground demonstrator. The performance of the device was found extremely satisfying, and often exceeded the system requirements.
Technical Paper

One Year Operations of the MITA Mini-Satellite–Validation of the Thermal Design from On-Orbit Data

2001-07-09
2001-01-2261
MITA is one of the ASI standard platforms for scientific missions. Its demonstration mission was launched the 15th July 2000 from Plesetsk by means of a COSMOS rocket. According to the technological qualification goal of the mission, it was possible to use the spacecraft operations for the thermal design performance characterization; so doing several measurements were available as correlation points with the thermal model. At the end of the thermal model validation campaign an attitude control strategy was implemented in order to maximize the time used for scientific observations. In particular precious data were collected in order to reduce the modeling uncertainties in the MITA satellite’s family, whose first commercial mission is scheduled for 2003, carrying a gamma- ray telescope. In its first mission the MITA platform was carrying a particle detector called NINA, contained in a pressurized vessel.
Technical Paper

Experimental Characterization of Power Dissipation of Battery Cells for Space Environment

2002-07-15
2002-01-2544
An experimental campaign is presented aiming at the characterization of thermal dissipation of batteries to be used on board of small satellites. A suitably designed device allows to manage automatically the orbital cycling simulation between battery cell charge and discharge. The cell thermal performance is characterized in various combinations of temperature, discharge current and Depth of Discharge. The gathered data are used for providing guidelines in the design of a family of Italian Small Satellites.
Technical Paper

Commercial Micro Heat-Pipes Installation Into High Dissipation Space Equipments: On Ground Testing Preliminary Results

2002-07-15
2002-01-2330
Commercial heat pipes installation is proposed for a high performance space born DC/DC converter module. The module is the core of the Remote Power Distribution Assembly (RPDA) power unit for the payloads on board the Columbus Module of he International Space Station ISS. An experimental campaign is performed to characterize the thermal conductance of a copper water micro heat pipe, as a function of the power and of the temperature.
Technical Paper

Thermal Analysis for Systems Perturbed in the Linear Domain Method Development and Numerical Validation

2005-07-11
2005-01-3056
Improvements on the thermal analysis for system perturbed by micro-thermal fluctuations are presented: the method applies to any kind of (small) perturbation, in particular to the random ones. Opposite to time domain conventional transient analysis, this method answers the need for frequency domain thermal analysis dictated by the newest scientific missions, with tight temperature stability requirements (expressed in the frequency domain). The small temperature fluctuations allow for assuming any thermal systems a linear one; hence linear system theory holds, and powerful tools to calculate key parameters like frequency response can be successfully employed. MIMO (Multi-Input-Multi-Output) systems theory is applied, the inputs being perturbations to the thermal system (boundary temperatures oscillations and power sources ripple of any shape: pulse, step, periodic, random, …), while the outputs are the temperatures of the sensible parts.
X