Refine Your Search

Topic

Search Results

Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
Journal Article

An Efficient, Durable Vocational Truck Gasoline Engine

2016-04-05
2016-01-0660
This paper describes the potential for the use of Dedicated EGR® (D-EGR®) in a gasoline powered medium truck engine. The project goal was to determine if it is possible to match the thermal efficiency of a medium-duty diesel engine in Class 4 to Class 7 truck operations. The project evaluated a range of parameters for a D-EGR engine, including displacement, operating speed range, boosting systems, and BMEP levels. The engine simulation was done in GT-POWER, guided by experimental experience with smaller size D-EGR engines. The resulting engine fuel consumption maps were applied to two vehicle models, which ran over a range of 8 duty cycles at 3 payloads. This allowed a thorough evaluation of how D-EGR and conventional gasoline engines compare in fuel consumption and thermal efficiency to a diesel. The project results show that D-EGR gasoline engines can compete with medium duty diesel engines in terms of both thermal efficiency and GHG emissions.
Journal Article

Development of a Structurally Optimized Heavy Duty Diesel Cylinder Head Design Capable of 250 Bar Peak Cylinder Pressure Operation

2011-09-13
2011-01-2232
Historically, heavy-duty diesel (HDD) engine designs have evolved along the path of increased power output, improved fuel efficiency and reduced exhaust gas emissions, driven both by regulatory and market requirements. The various technologies employed to achieve this evolution have resulted in ever-increasing engine operating cylinder pressures, higher than for any other class of internal combustion engine. Traditional HDD engine design architecture limits peak cylinder pressure (PCP) to about 200 bar (2900 psi). HDD PCP had steadily increased from the early 1970's until the mid 2000's, at which point the structural limit was reached using traditional methods and materials. Specific power output reversed its historical trend and fell at this time as a result of technologies employed to satisfy new emissions requirements, most notably exhaust gas recirculation (EGR).
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Application of Computational Fluid Dynamics Analysis in Improving Valve Design

2002-03-19
2002-01-1397
Computational Fluid Dynamics (CFD) analysis software is being developed by many companies and it is a valuable tool in designing hydraulic components. CFD analysis can provide accurate predictions of pressure drop in fluid flow paths and offer insight into the primary source of losses. When used in conjunction with solid modeling design software, the process of optimizing a design can be accomplished much quicker, reducing development costs and time. This paper presents a CFD analysis of an existing valve design and compares it to an improved design. The source of the primary losses of the existing valve will be identified which will lead to modifications to design features that minimize those losses. These modifications will be modeled and analyzed for predicted improvements. Pressure drop tests will be conducted on the original design to verify the analysis. Internal pressure loading of valve parts cannot easily be determined by testing.
Technical Paper

Application of On-Highway Emissions Technology on a Scraper Engine

1992-04-01
920923
An investigation was performed to determine the effects of applying on-highway heavy-duty diesel engine emissions reduction technology to an off-highway version of the engine. Special attention was paid to the typical constraints of fuel consumption, heat rejection, packaging and cost-effectiveness. The primary focus of the effort was NOx, reduction while hopefully not worsening other gaseous and particulate emissions. Hardware changes were limited to “bolt-on” items, thus excluding piston and combustion chamber modifications. In the final configuration, NOx was improved by 28 percent, particulates by 58 percent, CO and HC were also better and the fuel economy penalty was limited to under 4 percent. Observations are made about the effectiveness of various individual and combined strategies, and potential problems are identified.
Technical Paper

Comparison of Hydrocarbon Measurement with FTIR and FID in a Dual Fuel Locomotive Engine

2016-04-05
2016-01-0978
Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
Technical Paper

Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst

2017-03-28
2017-01-0957
It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Technical Paper

Noise Benchmarking of the Detroit Diesel DD15 Engine

2011-05-17
2011-01-1566
Several new or significantly upgraded heavy duty truck engines are being introduced in the North American market. One important aspect of these new or revised engines is their noise characteristics. This paper describes the noise related characteristics of the new DD15 engine, and compares them to other competitive heavy truck engines. DD15 engine features relevant to noise include a rear gear train, isolated oil pan and valve cover, and an amplified high pressure common rail fuel system. The transition between non-amplified and amplified common rail operation is shown to have a significant noise impact, not unlike the transition between pilot injection and single shot injection in some other engines.
Technical Paper

Optimization of Heavy Duty Diesel Engine Lubricant and Coolant Pumps for Parasitic Loss Reduction

2018-04-03
2018-01-0980
As fuel economy becomes increasingly important in all markets, complete engine system optimization is required to meet future standards. In many applications, it is difficult to realize the optimum coolant or lubricant pump without first evaluating different sets of engine hardware and iterating on the flow and pressure requirements. For this study, a Heavy Duty Diesel (HDD) engine was run in a dynamometer test cell with full variability of the production coolant and lubricant pumps. Two test stands were developed to allow the engine coolant and lubricant pumps to be fully mapped during engine operation. The pumps were removed from the engine and powered by electric motors with inline torque meters. Each fluid circuit was instrumented with volume flow meters and pressure measurements at multiple locations. After development of the pump stands, research efforts were focused on hardware changes to reduce coolant and lubricant flow requirements of the HDD engine.
Technical Paper

Development of a Heavy Duty On-Highway Natural Gas-Fueled Engine

1992-10-01
922362
A heavy-duty 320 kW diesel engine has been converted to natural gas operation. Conversion technology was selected to minimize costs while reaching NOx emissions goals of less than 3.2 g/kW-hr. Two engines are being converted using quiescent and high swirl combustion systems. The first engine with low swirl cylinder heads of the base diesel engine, and a combustion system developed for it was tested on a steady state cycle that has been shown to simulate the US heavy duty transient test cycle. It shows NOx emissions of 2.9 g/kW-hr and total HC emissions of 5.4 g/kW-hr. It is suspected that the HC emission is high because of high valve overlap. Experience with other similar engines suggests that non-methane HC emission is about 0.4-0.8 g/kW-hr. It is also expected that modified valve events and/or an oxidation catalyst can reduce HC emissions to much lower levels. The efficiency of the low swirl natural gas engine at this NOx level is 36 percent at rated condition.
Technical Paper

Conversion of Two Small Utility Engines to LPG Fuel

1993-09-01
932447
Southwest Research Institute (SwRI) converted two small air-cooled, gasoline engines to operate on LPG (sometimes called propane since propane is LPG's major constituent). Typical two- and four-cycle engines were chosen for this investigation. The two-cycle engine used was a McCulloch string trimmer engine with 28 cc displacement. The four-cycle engine used was an L-head, Tecumseh TVS90 with 148 cc displacement. These are typical of engines found on lower cost lawn mowers and string trimmers. The engines were baseline tested on gasoline, converted to LPG, and tested to determine equivalence ratios at which the engines could be operated without exceeding manufacturers' recommended spark plug seat or exhaust temperatures. Engine startability and throttle response was maintained with the LPG conversion. The emissions of the four-cycle engine were measured following the CARB 6-mode emissions test procedure.
Technical Paper

Heavy-Duty Diesel Hydrocarbon Speciation:Key Issues and Technological Challenges

1993-10-01
932853
Development of methodology for diesel hydrocarbon speciation of C12-C22 compounds and the application of that methodology to determine total ozone forming potential of diesel exhaust emissions is an extremely complicated task. Methodology has already been developed for speciating C1-C12 exhaust emissions from engines and vehicles fueled with gasoline, diesel, and alternate fuels. However, very little or no information is available for exhaust speciation of C12-C22 compounds as sampling and analytical constraints make the collection and analysis of the higher molecular weight compounds extremely challenging. Key issues related to the definition of “hydrocarbons” also need to be addressed prior to promulgation of future reactivity-based legislation for diesels (e.g., Which exhaust hydrocarbon compounds actually exist in gas-phase and participate in atmospheric ozone formation?).
Technical Paper

Greenhouse Gas Reduction from EnviroKool Piston in Lean Burn Natural Gas and Diesel Dual Fuel Heavy Duty Engine

2022-06-14
2022-37-0004
Heavy-duty (HD) internal combustion engines (ICE) have achieved quite high brake thermal efficiencies (BTE) in recent years. However, worldwide GHG regulations have increased the pace towards zero CO2 emissions. This, in conjunction with the ICE reaching near theoretical efficiencies means there is a fundamental lower limit to the GHG emissions from a conventional diesel engine. A large factor in achieving lower GHG emissions for a given BTE is the fuel, in particular its hydrogen to carbon ratio. Substituting a fuel like diesel with compressed natural gas (CNG) can provide up to 25% lower GHG at the same BTE with a sufficiently high substitution rate. However, any CNG slip through the combustion system is penalized heavily due to its large global warming potential compared to CO2. Therefore, new technologies are needed to reduce combustion losses in CNG-diesel dual fuel engines.
Technical Paper

Emissions from Trucks by Chassis Version of 1983 Transient Procedure

1980-10-01
801371
Regulated gaseous, particulate and several unregulated emissions are reported from four heavy-duty diesel engines operated on the chassis version of the 1983 transient procedure. Emissions were obtained from Caterpillar 3208, Mack ENDT 676, Cummins Formula 290 and Detroit Diesel 8V-71 engines with several diesel fuels. A large dilution tunnel (57′ × 46″ ID) was fabricated to allow total exhaust dilution, rather than the double dilution employed in the stationary engine version of the transient procedure. A modal particulate sampler was developed to obtain particulate data from the individual segments of the 1983 transient procedure. The exhaust gas was analyzed for benzo(a)pyrene, metals, N2O, NO2, individual hydrocarbons and HCN. Sequential extractions were performed and measured versus calculated fuel consumptions were obtained.
Technical Paper

REDSOD - A New Concept in Earthmoving

1967-02-01
670271
REDSOD, an acronym for Repetitive Explosive Device for Soil Displacement, utilizes the energy generated within a combustion chamber by the combustion of compressed air and a hydrocarbon fuel to displace and move soil or material. An integral wedge-shaped base shoe with a large exhaust opening in its top surface is pushed into a soil overburden at depths up to 5 ft or more by a transporting vehicle. When the combustion chamber pressure has reached a maximum value, the hot, high pressure gases are released through the exhaust opening under the soil overburden. The soil is disaggregated and displaced up and out of the excavation. Deflectors can turn the direction of the soil's trajectory to deliver it to one side of the excavation. A greatly increased productivity per unit of equipment is possible over conventional earthmoving means.
Technical Paper

Synthetic Fuel Operation in a Heavy Duty Diesel Engine

1986-10-01
861538
A heavy duty (150 kW) diesel engine was tested to determine operational problems while running on minimally processed synthetic fuels. A reference No. 2 diesel fuel was compared with liquid products derived from shale, tar sands, and coal. Information on the engine setup and test procedure is presented. The test results include engine power, thermal efficiency, ignition delay, gaseous and particulate emissions, smoke opacity, cylinder pressure, and heat release data. Cold start data at 0°C and −20° C and idle deposit test results are also presented. These data should help to determine future engine modifications to enhance synfuel engine performance.
X