Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Meeting RFS2 Targets with an E10/E15-like Fuel - Experimental and Analytical Assessment of Higher Alcohols in Multi-component Blends with Gasoline

2013-10-14
2013-01-2612
This paper evaluates the potential of adding higher alcohols to gasoline blendstock in an attempt to improve overall fuel performance. The alcohols considered include ethanol, normal- and iso-structures of propanol, butanol and pentanol as well as normal-hexanol (C2-C6). Fuel performance is quantified based on energy content, knock resistance as well as petroleum displacement and promising multi-component blends are systematically identified based on property prediction methods. These promising multi-component blends, as well as their respective reference fuels, are subsequently tested for efficiency and emissions performance utilizing a gasoline direct injection, spark ignition engine. The engine test results confirm that combustion and efficiency of tailored multi-component blends closely match those of the reference fuels. Regulated emissions stemming from combustion of these blends are equal or lower compared to the reference fuels across the tested engine speed and load regime.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

Experimental Studies of an Advanced Ceramic Diesel Particulate Filter

2008-04-14
2008-01-0622
A Cummins ISB 5.9 liter medium-duty engine with cooled EGR has been used to study an early extrusion of an advanced ceramic uncatalyzed diesel particulate filter (DPF). Data for the advanced ceramic material (ACM) and an uncatalyzed cordierite filter of similar dimensions are presented. Pressure drop data as a function of mass loadings (0, 4, and 6 grams of particulate matter (PM) per liter of filter volume) for various flow rate/temperature combinations (0.115 - 0.187 kg/sec and 240 - 375 °C) based upon loads of 15, 25, 40 and 60% of full engine load (684 N-m) at 2300 rpm are presented. The data obtained from these experiments were used to calibrate the MTU 1-D 2-Layer computer model developed previously at MTU. Clean wall permeability determined from the model calibration for the ACM was 5.0e-13 m2 as compared to 3.0e-13 m2 for cordierite.
Technical Paper

An Experimental Study of Particulate Thermal Oxidation in a Catalyzed Filter During Active Regeneration

2009-04-20
2009-01-1474
Active regeneration experiments were performed on a Cummins 2007 aftertreatment system by hydrocarbon dosing with injection of diesel fuel downstream of the turbocharger. The main objective was to characterize the thermal oxidation rate as a function of temperature and particulate matter (PM) loading of the catalyzed particulate filter (CPF). Partial regeneration tests were carried out to ensure measureable masses are retained in the CPF in order to model the oxidation kinetics. The CPF was subsequently re-loaded to determine the effects of partial regeneration during post-loading. A methodology for gathering particulate data for analysis and determination of thermal oxidation in a CPF system operating in the engine exhaust was developed. Durations of the active regeneration experiments were estimated using previous active regeneration work by Singh et al. 2006 [1] and were adjusted as the experiments progressed using a lumped oxidation model [2, 3].
Technical Paper

Investigation of Combustion Knock Distribution in a Boosted Methane-Gasoline Blended Fueled SI Engine

2018-04-03
2018-01-0215
The characteristics of combustion knock metrics over a number of engine cycles can be an essential reference for knock detection and control in internal combustion engines. In a Spark-Ignition (SI) engine, the stochastic nature of combustion knock has been shown to follow a log-normal distribution. However, this has been derived from experiments done with gasoline only and applicability of log-normal distribution to dual-fuel combustion knock has not been explored. To evaluate the effectiveness and accuracy of log-normal distributed knock model for methane-gasoline blended fuel, a sweep of methane-gasoline blend ratio was conducted at two different engine speeds. Experimental investigation was conducted on a single cylinder prototype SI engine equipped with two fuel systems: a direct injection (DI) system for gasoline and a port fuel injection (PFI) system for methane.
Technical Paper

Investigation of Diesel Liquid Spray Penetration Fluctuations under Vaporizing Conditions

2012-04-16
2012-01-0455
Diesel combustion and emissions formation is largely spray and mixing controlled and hence understanding spray parameters, specifically vaporization, is key to determine the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, an eight-hole common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel at charge gas conditions typical of full load boosted engine operation. Liquid penetration of the eight sprays was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with 0% oxygen. Conditions investigated included a charge temperature sweep of 800 to 1300 K and injection pressure sweep of 1034 to 2000 bar at a constant charge density of 34.8 kg/m₃.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part II - Blend Properties and Target Value Sensitivity

2013-04-08
2013-01-1126
Higher carbon number alcohols offer an opportunity to meet the Renewable Fuel Standard (RFS2) and improve the energy content, petroleum displacement, and/or knock resistance of gasoline-alcohol blends from traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part II of this paper builds upon the alcohol selection, fuel implementation scenarios, criteria target values, and property prediction methodologies detailed in Part I. For each scenario, optimization schemes include maximizing energy content, knock resistance, or petroleum displacement. Optimum blend composition is very sensitive to energy content, knock resistance, vapor pressure, and oxygen content criteria target values. Iso-propanol is favored in both scenarios' suitable blends because of its high RON value.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

An Experimental Investigation into Particulate Matter Oxidation in a Catalyzed Particulate Filter with Biodiesel Blends on an Engine during Active Regeneration

2013-04-08
2013-01-0521
Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF) aftertreatment system. The effects of SME biodiesel blends were investigated to determine the particulate matter (PM) oxidation reaction rates for active regeneration. The experimental data from this study will also be used to calibrate the MTU-1D CPF model [1]. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at a CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also investigated. The PM reaction rate was shown to increase with increasing percent biodiesel in the test fuel as well as increasing CPF temperature.
Technical Paper

Analysis of Combustion Knock Metrics in Spark-Ignition Engines

2006-04-03
2006-01-0400
Combustion knock detection and control in internal combustion engines continues to be an important feature in engine management systems. In spark-ignition engine applications, the frequency of occurrence of combustion knock and its intensity are controlled through a closed-looped feedback system to maintain knock at levels that do not cause engine damage or objectionable audible noise. Many methods for determination of the feedback signal for combustion knock in spark-ignition internal combustion engines have been employed with the most common technique being measurement of engine vibration using an accelerometer. With this technique single or multiple piezoelectric accelerometers are mounted on the engine and vibrations resulting from combustion knock and other sources are converted to electrical signals. These signals are input to the engine control unit and are processed to determine the signal strength during a period of crank-angle when combustion knock is expected.
Technical Paper

Target Based Rapid Prototyping Control System for Engine Research

2006-04-03
2006-01-0860
Today's advanced technology engines have a high content of electronic actuation requiring sophisticated real-time embedded software sensing and control. To enable research on such engines, a system with a flexible engine control unit (ECU) that can be rapidly configured and programmed is desired. Such a system is being used in the Advanced Internal Combustion Engine (AICE) Laboratories at Michigan Tech University (MTU) for research on a multi-cylinder spark-ignited gasoline, a high pressure common rail diesel and a single cylinder alternative fuels research engine. The system combines a production ECU with a software development system utilizing Mathworks Simulink/Stateflow © modeling tools. The interface in the Simulink modeling environment includes a library of modeling and interface blocks to the production Operating System (OS), Low Level Drivers (LLD) and CAN-based calibration tool.
Technical Paper

Increasing the Effective AKI of Fuels Using Port Water Injection (Part II)

2022-03-29
2022-01-0434
This is the second part of a study on using port water injection to quantifiably enhance the knock performance of fuels. In the United States, the metric used to quantify the anti-knock performance of fuels is Anti Knock Index (AKI), which is the average of Research Octane Number (RON) and Motor Octane Number (MON). Fuels with higher AKI are expected to have better knock mitigating properties, enabling the engine to run closer to Maximum Brake Torque (MBT) spark timing in the knock limited region. The work done in part I of the study related increased knock tolerance due to water injection to increased fuel AKI, thus establishing an ‘effective AKI’ due to water injection. This paper builds upon the work done in part I of the study by repeating a part of the test matrix with Primary Reference Fuels (PRFs), with iso-octane (PRF100) as the reference fuel and lower PRFs used to match its performance with the help of port water injection.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Start of Injection and Spark Timing Effects

2015-09-29
2015-01-2813
The increased availability of natural gas (NG) in the United States (US), and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim is to realize fuel cost savings and reduce harmful emissions, while maintaining durability. This is a potential path to help the US reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe; however, this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Characterization of Partially Stratified Direct Injection of Natural Gas for Spark-Ignited Engines

2015-04-14
2015-01-0937
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) diesel engines to NG fuel and combustion systems (compressed or liquefied). The intention is to realize fuel cost savings and reduce harmful emissions, while maintaining or improving overall vehicle fuel economy. This is a potential path to help the US achieve energy diversity and reduce dependence on crude oil. Traditionally, port-injected, premixed NG spark-ignited combustion systems have been used for medium and heavy duty engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding premixing and extending the lean limits which helps to extend the knock limit.
Journal Article

Increasing the Effective AKI of Fuels Using Port Water Injection (Part I)

2021-04-06
2021-01-0470
Anti-knock index (AKI) is a metric that can be used to quantify the anti-knock performance of a fuel and is the metric used in the United States. AKI is the average of Research Octane Number (RON) and Motor Octane Number (MON), which are calculated for every fuel on a Cooperative Fuel Research (CFR) engine under controlled conditions according to ASTM test procedures. Fuels with higher AKI have better knock mitigating properties and can be run with a combustion phasing closer to MBT in the knock limited operating region of a gasoline engine. However, fuels with higher AKI tend to be costlier and less environmentally friendly to produce. As an alternative, the anti-knock characteristics of lower AKI fuels can be improved with water injection. In this sense, the water injection increases the ‘effective AKI’ of the fuel.
Technical Paper

Experimental and Numerical Study of Water Injection under Gasoline Direct Injection Engine Relevant Conditions

2023-04-11
2023-01-0313
Water injection has been used to reduce the charge temperature and mitigate knocking due to its higher latent heat of vaporization compared to gasoline fuel. When water is injected into the intake manifold or into the cylinder, it evaporates by absorbing heat energy from the surrounding and results in charge cooling. However, the effect of detailed evaporation process on the combustion characteristics under gasoline direct injection relevant conditions still needs to be investigated. Therefore, spray study was firstly conducted using a multi-hole injector by injecting pure water and water-methanol mixture into constant volume combustion chamber (CVCC) at naturally aspirated and boosted engine conditions. The target water-fuel ratio was fixed at 0.5. Mie-scattering and schlieren images of sprays were analyzed to study spray characteristics, and evaluate the amount of water vaporization.
X