Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Advanced 1D 2-Layer Catalyzed Diesel Particulate Filter Model to Simulate: Filtration by the Wall and Particulate Cake, Oxidation in the Wall and Particulate Cake by NO2 and O2, and Regeneration by Heat Addition

2006-04-03
2006-01-0467
A numerical model to simulate the filtration and regeneration performance of catalyzed diesel particulate filters (CPFs) was developed at Michigan Technological University (MTU). The mathematical formulation of the model and some results are described. The model is a single channel (inlet and outlet) representation of the flow while the thermal and catalytic regeneration framework is based on a 2-layer approach. The 2-layer model can simulate particulate matter (PM) oxidation by thermal and ‘catalytic’ means of oxidation with O2. Several improvements were made to this basic model and are described in this paper. A model to simulate PM oxidation by NO2/Temperature entering the particulate filter and oxidizing the PM in the two layers of the PM cake was developed. This model can be used to simulate the performance of filters with catalyst washcoats and uncatalyzed filters placed downstream of diesel oxidation catalysts (DOCs), as in the continuously regenerating traps, CRT's®.
Technical Paper

An Experimental and Modeling Study of a Diesel Oxidation Catalyst and a Catalyzed Diesel Particulate Filter Using a 1-D 2-Layer Model

2006-04-03
2006-01-0466
Modeling of diesel exhaust after-treatment devices is a valuable tool in the development and performance evaluation of these devices in a cost effective manner. Results from steady state loading experiments on a catalyzed particulate filter (CPF) in a Johnson Matthey CCRT®, performed with and without the upstream diesel oxidation catalyst (DOC) are described in this paper. The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm) on a Cummins ISM 2002 heavy duty diesel engine. The data obtained were used to calibrate one dimensional (1-D) DOC and CPF models developed at Michigan Technological University (MTU). The 1-D 2-layer single channel CPF model helped evaluate the filtration and passive oxidation performance of the CPF. DOC modeling results of the pressure drop and gaseous emission oxidation performance using a previously developed model are also presented.
X