Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

All Electronic Dual Fuel Injection System for the Belarus D-144 Diesel Engine

1990-08-01
901502
Through the joint efforts of BKM, SPI, AFS and Belarus, an advanced, all- electronic dual fuel system has been developed for retrofit applications on the Belarus D-144, four-cylinder, 4.15 liter, 44.7 KW diesel engine. The system features all electronic control on both full diesel or up to 90 % gas with automatic and instant changeover capability. The existing mechanical diesel injection system was replaced with an all electronic, hydraulically actuated, diesel injection system coupled with timed multi-point electronic injection for the gas system. The control strategy does not utilize inlet throttling typically used on gas fueled engines. The effectiveness of this simplified control system is assumed to be the result of a degree of charge stratification. The D-144 engine is utilized in a wide variety of industrial, farm and highway applications. Special application requirements can be accommodated by programming the EPROM control chip.
Technical Paper

Electronic Direct Fuel Injection (EDFI) for Small Two-Stroke Engines

1999-09-28
1999-01-3312
The benefits of direct cylinder fuel injection to the fuel economy and exhaust emissions of small spark ignited two-stroke engines is well known. The selection of a commercially viable fuel injection solution continues to receive evaluation and scrutiny by the engine manufacturers. This paper describes the development and demonstration of an EDFI solution which is applicable to low cost and high production volume engines in several industries. The system is based on the “accumulator” fuel injection operating principle, which involves pressurizing fuel within an injection nozzle and subsequently releasing the pressurized fuel into the combustion chamber on command. This concept provides very short injection duration throughout the dynamic operating range of the engine as well as high injection frequency capability.
X