Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

General Motors Rear Wheel Drive Eight Speed Automatic Transmission

2014-04-01
2014-01-1721
General Motors shall introduce a new rear wheel drive eight speed automatic transmission, known as the 8L90, in the 2015 Chevrolet Corvette. The rated turbine torque capacity is 1000 Nm. This transmission replaces the venerable 6L80 six speed automatic. The objectives behind creation of this transmission are improved fuel economy, performance, and NVH. Packaging in the existing vehicle architecture and high mileage dependability are the givens. The architecture is required to offer low cost for a rear drive eight speed transmission while meeting the givens and objectives. An eight speed powerflow, invented by General Motors, was selected. This powerflow yields a 7.0 overall ratio spread, enabling improved launch capability because of a deeper first gear ratio and better fuel economy due to lower top gear N/V capability, relative to the 6L80. The eight speed ratios are generated using four simple planetary gearsets, two brake clutches, and three rotating clutches.
Journal Article

Analytical Study of a Dog Clutch in Automatic Transmission Application

2014-04-01
2014-01-1775
A dog clutch, if successfully implemented in an automatic transmission, provides better packaging and the potential for improved fuel economy. The technical requirements for this concept are examined through modeling and simulation. As a first step, a physics-based component level model is developed that provides an understanding of the basic contact and impact dynamics. The model is compared to a built-in AMESim block to establish confidence. This component level model is then integrated into a powertrain system model within the AMESim environment. As a test bed, the powertrain model is exercised to simulate a friction plate to dog clutch shift in a 6-speed automatic transmission. The analysis helps to define the slip speed target at the onset of the dog clutch engagement while ensuring shift requirements are met. Finally, the model is validated by comparing the simulated results with measured dynamometer data.
Journal Article

A DFSS Approach to Determine Automatic Transmission Gearing Content for Powertrain-Vehicle System Integration

2014-04-01
2014-01-1774
This investigation utilizes a DFSS analysis approach to determine automatic transmission gear content required to minimize fuel consumption for various powertrain - vehicle systems. L18 and L27 inner arrays with automatic transmission design and shift pattern constraint parameters were varied to determine their relative influence on fuel consumption. An outer noise array consisting of two vehicles with various engines, final drive ratios and legislated emissions test cycles was used to make a robust transmission selection based on minimizing fuel consumption. The full details of the DFSS analysis method and assumptions are presented along with a detailed examination of the results. With respect to transmission design parameters, parasitic spinloss and gear mesh efficiency were found to be most important followed by the number of gears. The DFSS analysis further revealed that unique transmission design formulations are potentially required for widely varying engines.
Journal Article

Design Optimization, Development and Manufacturing of General Motors New Battery Electric Vehicle Drive Unit (1ET35)

2014-04-01
2014-01-1806
The General Motors (GM) 1ET35 drive unit is designed for an optimum combination of efficiency, performance, reliability, and cost as part of the propulsion system for the 2014 Chevrolet Spark Electric Vehicle (EV) [1]. The 1ET35 drive unit is a coaxial transaxle arrangement which includes a permanent-magnet (PM) electric motor and a low loss single-planetary transmission and is the sole source of propulsion for the battery-only electric vehicle (BEV) Spark. The 1ET35 is designed with experience gained from the first modern production BEV, the 1996 GM EV1. This paper describes the design optimization and development of the 1ET35 and its electric motor that will be made in the United States by GM. The high torque density electric motor design is based on high-energy permanent magnets that were originally developed by GM in connection with the EV1 and GM bar-wound stator technology introduced in the 2Mode Hybrid electric transmission, used in the Chevrolet Volt and in GM eAssist systems.
Journal Article

Localized Cooling for Human Comfort

2014-04-01
2014-01-0686
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Journal Article

Obtaining Structure-borne Input for Hybrid FEA/SEA Engine Enclosure Models through a Simplified Transfer Path Analysis

2015-06-15
2015-01-2349
Structure-borne inputs to hybrid FEA/SEA models could have significant effects on the model prediction accuracy. The purpose of this work was to obtain the structure-borne noise (SBN) inputs using a simplified transfer path analysis (TPA) and identify the significance of the structure-borne and airborne contributions to the spectator sound power of an engine with enclosure for future modeling references. Force inputs to the enclosure from the engine were obtained and used as inputs to a hybrid engine enclosure model for sound prediction.
Journal Article

Performance Characterization of Automatic Transmission Upshifts with Reduced Shift Times

2015-04-14
2015-01-1086
As the number of fixed gear ratios in automatic transmissions continues to increase in the pursuit of powertrain system efficiency, particular consideration must continue to be focused on optimizing the design for shifting performance. This investigation focuses on the effect of shift time on the performance attributes of shift quality, durability, on schedule fuel consumption and enablers to further reduce shift time. A review of fundamental design features that enable reduced shift times in both planetary and dual clutch transmissions is presented along with key operating features of both the transmission and engine/prime mover. A lumped parameter metric is proposed to assess and compare the upshift controllability of new transmission architectures and powerflows using simple analysis. The durability of fast shift times during performance maneuvers are quantified through calculation of shifting clutch energy and power from analysis and form measurements on a powertrain dynamometer.
Journal Article

Automatic Transmission Gear Ratio Optimization and Monte Carlo Simulation of Fuel Consumption with Parasitic Loss Uncertainty

2015-04-14
2015-01-1145
This investigation utilizes energy analysis and statistical methods to optimize step gear automatic transmissions gear selection for fuel consumption. A full factorial matrix of simulations using energy analysis was performed to determine the optimal number of gears and gear ratios that provide the best fuel consumption performance for a particular vehicle - engine application. The full factorial matrix setup as a design of experiment (DOE) was applied to five vehicle applications, each with two engines to examine the potential differences that variations in road load and engine characteristics might have on optimal transmission gearing selection. The transmission gearing options considered in the DOE were number of gears, launch gear ratio and top gear ratio. Final drive ratio was also included due to its global influence on vehicle performance and powertrain operating speeds and torque.
Journal Article

General Motors Front Wheel Drive Seven Speed Dry Dual Clutch Automatic Transmission

2015-04-14
2015-01-1093
General Motors has introduced a new front wheel drive seven speed dry dual clutch automatic transmission in 2014. The 250 Nm input torque rated gear box was designed and engineered for a global market in both front wheel drive and all-wheel drive configurations. The transmission has integrated start/stop capability enabled by the use of an electric motor driven pump and a pressurized accumulator. The architecture selected was chosen for optimization of packaging, fuel economy, mass, shift pleasability, and NVH. High mileage durability and world class drivability were the cornerstone deliverables during the engineering and design process Fuel efficiency is estimated to be 3% - 10% improvement over a conventional six speed automatic transmission. FWD variant wet mass of 78.1 kg was achieved through the rigorous engineering processes used to optimize the transmission system.
Journal Article

Chevrolet Volt Electric Utilization

2015-04-14
2015-01-1164
Evaluation of one year of in-use operating data from first generation Chevrolet Volt Extended-Range Electric Vehicle (E-REV) retail customers determined trip initial Internal Combustion Engine (ICE) starts were reduced by 70% relative to conventional vehicles under the same driving conditions. These Volt drivers were able to travel 74% of their total miles in EV without requiring the ICE's support. Using this first generation Volt data, performance of the second generation Volt is projected. The Southern California Association of Governments (SCAG) Regional Travel Survey (RTS) data set was also processed to make comparisons between realistic PHEV constraints and E-REV configurations. A Volt characteristic E-REV was found to provide up to 40 times more all-electric trips than a PHEV over the same data set.
Journal Article

Optimal Power Management of Vehicle Sourced Military Outposts

2017-03-28
2017-01-0271
This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures. Vehicles with power export capability are an attractive supplement to this electrical power evolution since they are usually on site, would reduce the amount of material for outpost creation, and provide a modular approach to outpost build-up.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
X