Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Compressed Hydrogen Storage for Fuel Cell Vehicles

2001-08-20
2001-01-2531
Near term (ca. 2005) Fuel Cell Vehicles (FCVs) will primarily utilize Direct-Hydrogen Fuel Cell (DHFC) systems. The primary goal of this study was to provide an analytical basis for including a realistic Compressed Hydrogen Gas (CHG) fuel supply simulation within an existing dynamic DHFC system and vehicle model. The purpose of this paper is to provide a tutorial describing the process of modeling a hydrogen storage system for a fuel cell vehicle. Three topics were investigated to address the delivery characteristics of H2: temperature change (ΔT), non-ideal gas characteristics at high pressures, and the maximum amount of hydrogen available due to the CHG storage tank effective “state-of-charge” (SOC) -- i.e. how much does the pressure drop between the tank and the fuel cell stack reduce the usable H2 in the tank. The Joule-Thomson coefficient provides an answer to the expected ΔT during expansion of the H2 from 5000 psi to 45 psi.
Technical Paper

A Simulation Model for an Indirect Methanol Fuel Cell Vehicle

2000-08-21
2000-01-3083
This work focuses on the algorithms to simulate and analyze the characteristics of an indirect methanol fuel cell vehicle. The individual components of the electric drive train including transmission, the vehicle properties, such as drag, frontal area, wheel inertia etc., and the fuel cell system are modeled in a dynamic manner. Further the interaction between the individual components and a simple driver model is described. The algorithms are coded using the simulation tool Matlab/Simulink. The simulation tool is strictly setup in a modular form allowing modifications of individual component characteristics or control algorithms without the need to change the remainder of the model. For the benefit of a more in depth discussion of the applied algorithms and the setup of the model this paper focuses solely on the case of an Indirect Methanol Fuel Cell Vehicle (IMFCV) with steam reformer and without any additional energy storage.
X