Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Meeting the US Heavy-Duty EPA 2010 Standards and Providing Increased Value for the Customer

2010-10-05
2010-01-1934
The paper will discuss the design and development of heavy-duty diesel engines to meet the US EPA 2010 on-highway standards - 0.2 g/HP-hr NOx and 0.01 g/HP-hr particulate matter (PM). In meeting these standards a combination of in-cylinder control and aftertreatment control for both NOx and particulate has been used. For NOx control, a combination of cooled exhaust gas recirculation (EGR) and selective catalytic reduction (SCR) is used. The SCR catalyst uses copper zeolite to achieve high levels of NOx conversion efficiency with minimal ammonia slip and unparalleled thermal durability. For particulate control, a diesel particulate filter (DPF) with upstream oxidation catalyst (DOC) is used. While the DPF may be actively regenerated when required, it operates predominantly with passive regeneration - enabled by the high NOx levels between the engine and the DPF, associated with high efficiency SCR systems and NO₂ production across the DOC.
Journal Article

Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters

2015-04-14
2015-01-1056
A 1-dimensional analytic solution has been developed to evaluate the pressure drop and filtration performance of ceramic wall-flow partial diesel particulate filters (PFs). An axially resolved mathematical model for the static pressure and velocity profiles prevailing inside wall-flow filters, with such unique plugging configurations, is being proposed for the first time. So far, the PF models that have been developed are either iterative/numerical in nature [1], or based on commercial CFD packages [7]. In comparison, an analytic solution approach is a transparent and computationally inexpensive tool that is capable of accurately predicting trends as well as, offering explanations to fundamental performance behavior. The simple mathematical expressions that have been obtained facilitate rational decision-making when designing partial filters, and could also reduce the complexity of OBD logic necessary to control onboard filter performance.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

Effects of Methyl Ester Biodiesel Blends on NOx Emissions

2008-04-14
2008-01-0078
Effects of methyl ester biodiesel fuel blends on NOx emissions are studied experimentally and analytically. A precisely controlled single cylinder diesel engine experiment was conducted to determine the impact of a 20% blend of soy methyl ester biodiesel (B20) on NOx emissions. The data were then used to calibrate KIVA chemical kinetics models which were used to determine how the biodiesel blend affects NOx production during the combustion process. In addition, the impact on the engine control system of the lower specific energy content of biodiesel was determined. Both factors, combustion and controls, must be taken into account when determining the net NOx effect of biodiesel compared to conventional diesel fuel. Because the magnitude and even direction of NOx effect changes with engine load, the NOx effect associated with burning biodiesel blends over a duty cycle depends on the duty cycle average power and fuel cetane number.
Journal Article

Diesel Particulate Filter System - Effect of Critical Variables on the Regeneration Strategy Development and Optimization

2008-04-14
2008-01-0329
Regeneration of diesel particulate filters poses major challenges in developing the particulate matter emission control technology to meet EPA 2007/2010 emissions regulations. The problem areas are multifold due to the complexity involved in designing the filter system, developing regeneration strategies and controlling the regeneration process. This paper discusses the need for active regeneration systems. It also addresses several key limitations and trade-offs between the regeneration strategy, chemical kinetics, exhaust gas temperature and the regeneration efficiency. Passive regeneration of diesel particulate filter systems is known to be highly dependent on the engine-out [NOx/PM] ratio as well as exhaust temperature over the duty cycle. Using catalytic oxidation of auxiliary fuel injected into the system, the exhaust gas temperature can be successfully enhanced for filter regeneration.
Journal Article

Measurement of Dioxin and Furan Emissions during Transient and Multi-Mode Engine Operation

2011-04-12
2011-01-1158
This study analyzed the impact of transient and multi-mode engine conditions on emissions of dioxins and furans from a variety of diesel aftertreatment configurations. Exhaust aftertreatment systems included combinations of diesel oxidation catalyst, diesel particulate filter, and either Cu/zeolite or Fe/zeolite selective catalytic reduction catalyst. EPA method TO-9A was modified for proportional exhaust gas sampling, whereas EPA method 0023A was modified for raw exhaust gas sampling. Dioxin and furan emissions were first measured with modified method TO-9A during Federal Test Procedure transient cycles, but no toxic dioxins or furans were detected. Measurements were then taken with modified method 0023A during Ramped Mode Cycles-Supplemental Emissions Test experiments. Because more rigorous pre-cleaning and sample extraction procedures were used with this method and lower detection limits were achieved by the analytical laboratory, some dioxin and furan congeners were detected.
Technical Paper

The Effect of a Ceramic Particulate Trap on the Particulate and Vapor Phase Emissions of a Heavy-Duty Diesel Engine

1991-02-01
910609
Exhaust emissions were characterized from a Cummins LTA10 heavy-duty diesel engine operated at two EPA steady-state modes with and without an uncatalyzed Corning ceramic particulate trap. The regulated emissions of nitrogen oxides (NOx), hydrocarbons (HC), and total particulate matter (TPM) and its components as well as the unregulated emissions of PAH, nitro-PAH, mutagenic activity and particle size distributions were measured. The consistently significant effects of the trap on regulated emissions included reductions of TPM and TPM-associated components. There were no changes in NOx and HC were reduced only at one operating condition. Particle size distribution measurements showed that nuclei-mode particles were formed downstream of the trap, which effectively removed accumulation-mode particles. All of the mutagenicity was direct-acting and the mutagenic activity of the XOC was approximately equivalent to that of the SOF without the trap.
Technical Paper

Quantification of Biodiesel Content in Fuels and Lubricants by FTIR and NMR Spectroscopy

2006-10-16
2006-01-3301
The use of biodiesel requires the development of proper quantification procedures for biodiesel content in blends and in lubricants (fuel dilution in oil). Although the ester carbonyl stretch at 1746 wavenumbers (cm-1) is the most prominent band in the IR spectrum of biodiesel, it is difficult to use for quantification purposes due to a severe fluctuation of absorption strength from sample to sample, even at the same biodiesel content. We have demonstrated that the ester carbonyl fluctuation is not caused by variation in the ester alkyl chain length; but is most likely caused by the degree of hydrogen bonding of the ester functional group with water in the sample. Water molecules can form complexes with the ester compound affecting the strength of the ester carbonyl band. The impact of water on quantification of the biodiesel content of blends was significant, even for B100 samples that met the proposed ASTM D6751 water limit of 500 ppm by D6304 (Karl Fischer Methdod).
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Journal Article

Study of Basic Injection Configurations using a Direct-Injection Hydrogen Research Engine

2009-04-20
2009-01-1418
The application of hydrogen (H2) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for fuel cells as well as IC engines and hence it is widely regarded as the energy carrier of the future. The potential of hydrogen as an IC engine fuel can be optimized by direct injection (DI) as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently the engine efficiency and exhaust emissions. This paper studies a single-hole nozzle and examines the effects of injection strategy on engine efficiency, combustion behavior and NOx emissions. The experiments for this study are done on a 0.5 liter single-cylinder research engine which is specifically designed for combustion studies and equipped with a cylinder head that allows side as well as central injector location.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine

2016-04-05
2016-01-0806
Interest in natural gas as a fuel for light-duty transportation has increased due to its domestic availability and lower cost relative to gasoline. Natural gas, comprised mainly of methane, has a higher knock resistance than gasoline making it advantageous for high load operation. However, the lower flame speeds of natural gas can cause ignitability issues at part-load operation leading to an increase in the initial flame development process. While port-fuel injection of natural gas can lead to a loss in power density due to the displacement of intake air, injecting natural gas directly into the cylinder can reduce such losses. A study was designed and performed to evaluate the potential of natural gas for use as a light-duty fuel. Steady-state baseline tests were performed on a single-cylinder research engine equipped for port-fuel injection of gasoline and natural gas, as well as centrally mounted direct injection of natural gas.
Technical Paper

An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base

2007-10-29
2007-01-4000
In the early years of antifreeze/coolants (1920s & 30s) glycerin saw some usage, but because of higher cost and weaker freeze point depression, it was not competitive with ethylene glycol. Glycerin is a by-product of the manufacture of biodiesel (fatty acid methyl esters) made by reacting natural vegetable or animal fats with methanol. Biodiesel fuel is becoming increasingly important and is expected to gain a large market share in the next several years. Regular diesel fuels blended with 2%, 5%, and 20% biodiesel are now commercially available. The large amount of glycerin generated from high volume usage of biodiesel fuel has resulted in this chemical becoming cost competitive with the glycols currently used in engine coolants. For this reason, and lower toxicity comparable to that of propylene glycol, glycerin deserves to be reconsidered as a base for antifreeze/coolant.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

Visualization Techniques for Single Channel DPF Systems

2007-04-16
2007-01-1126
New techniques have been developed to visualize soot deposition in both traditional and new diesel particulate filter (DPF) substrate materials using a modified cyanoacrylate fuming technique. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results. Early results indicate that stabilizing the soot layer using a vaporized adhesive (Cynoacrylate) may allow analysis of the layer with new methods.
Technical Paper

Optimizing the Advanced Ceramic Material for Diesel Particulate Filter Applications

2007-04-16
2007-01-1124
This paper describes the application of pore-scale filtration simulations to the advanced ceramic material (ACM) developed for use in advanced diesel particulate filters. The application required the generation of a three-dimensional substrate geometry to provide the boundary conditions for the flow model. An innovative stochastic modeling technique was applied matching chord length distribution and the porosity profile of the material. Additional experimental validation was provided by the single-channel experimental apparatus. Results show that the stochastic reconstruction techniques provide flexibility and appropriate accuracy for the modeling efforts. Early investigation efforts imply that needle length may provide a mechanism for adjusting performance of the ACM for diesel particulate filter (DPF) applications. New techniques have been developed to visualize soot deposition in both traditional and new DPF substrate materials.
X