Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Hydrogen in Diesel Exhaust: Effect on Diesel Oxidation Catalyst Flow Reactor Experiments and Model Predictions

2009-04-20
2009-01-1268
Engine operating strategies typically geared towards higher fuel economy and lower NOx widely affect exhaust composition and temperature. These exhaust variables critically drive the performance of After Treatment (AT) components, and hence should guide their screening and selection. Towards this end, the effect of H2 level in diesel exhaust on the performance of a Diesel Oxidation Catalyst (DOC) was studied using flow reactor experiments, vehicle emission measurements and mathematical models. Vehicle chassis dynamometer data showed that exhaust from light-duty and heavy-duty diesel trucks contained very little to almost no H2 (FTP average CO/H2 ∼ 40 to 70) as compared to that of a gasoline car exhaust (FTP average CO/H2 ∼ 3). Two identical flow reactor experiments, one with H2 (at CO/H2 ∼ 3) and another with no H2 in the feed were designed to screen DOCs under simulated feed gas conditions that mimicked these two extremes in the exhaust H2 levels.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Stator Side Voltage Regulation of Permanent Magnet Generators

2009-11-10
2009-01-3095
Permanent magnet AC generators are robust, inexpensive, and efficient compared to wound-field synchronous generators with brushless exciters. Their application in variable-speed applications is made difficult by the variation of the stator voltage with shaft speed. This paper presents the use of stator-side reactive power injection as a means of regulating the stator voltage. Design-oriented analysis of machine performance for this mode of operation identifies an appropriate level of machine saliency that enables excellent terminal voltage regulation over a specified speed and load range, while minimizing stator current requirements. This paper demonstrates that the incorporation of saliency into the permanent magnet generator can significantly reduce the size of the reactive current source that is required to regulate the stator voltage during operation over a wide range of speeds and loads.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Post Mortem of an Aged Tier 2 Light-Duty Diesel Truck Aftertreatment System

2009-11-02
2009-01-2711
A 2005 prototype diesel aftertreatment system consisting of diesel oxidation catalysts (DOC), Cu/zeolite Selective Catalytic Reduction (SCR) catalyst, and Catalyzed Diesel Particulate Filter (CDPF) was aged to an equivalent of 120k mi on an engine dynamometer using an aging cycle that incorporated both city and highway driving modes. The program demonstrated durable reduction in particulate matter (PM) and nitrogen oxides (NOx) emissions to federal Tier 2 levels on a 6000 lbs light-duty truck application. Very low sulfur diesel fuel (∼15 ppm) enabled lower PM emissions, reduced the fuel penalty associated with the emission control system, and improved long-term system durability. A total of 643 filter regenerations occurred during the aging that raised the entire catalyst system to high temperatures on a regular basis. After testing the aged system on a 6000 lbs light-duty diesel truck, a post mortem analysis was completed on core samples taken from the DOC, SCR catalyst, and filter.
Journal Article

Lab Evaluation and Comparison of Corrosion Performance of Mg Alloys

2010-04-12
2010-01-0728
More Mg alloys are being considered for uses in the automotive industry. Since the corrosion performance of Mg alloy components in practical service environments is unknown, long term corrosion testing at automotive proving grounds will be an essential step before Mg alloy components can be implemented in vehicles. However, testing so many Mg alloy candidates for various parts is labor intensive for the corrosion engineers at the proving grounds. This report presents preliminary results in evaluating corrosion performance of Mg alloys based on rapid corrosion and electrochemical tests in the lab. In this study, four Mg alloy candidates for transmission cases and oil pans: AE44, AXJ530, MRI153M and MRI230D were tested in the lab and at General Motors Corporation Milford Proving Ground and their corrosion results were compared.
Journal Article

Mapping of Global Road Systems Based on Statistical Discriminant Analysis

2010-04-12
2010-01-0924
Automotive manufacturers are facing continuously changing Global environment. Traditionally, these manufacturers relied on structural and general durability tests to validate vehicles. For these tests to remain representative of customer usage in a Global environment, the overall surface conditions of the Global road systems must be studied. Understanding and classifying these road systems conditions is an important step in dealing with vehicle durability in the Global environment. In this paper, an approach to mapping the world road systems into Established Roads (ER) and Developing Roads (DR), utilizing Statistical Discriminant Analysis (SDA), is presented. The classification of Global regions as DR and ER road systems can be effectively used to recommend appropriate development and validation tests for each road system. A few examples are presented to demonstrate how the ER vs.
Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

General Motors Rear Wheel Drive Eight Speed Automatic Transmission

2014-04-01
2014-01-1721
General Motors shall introduce a new rear wheel drive eight speed automatic transmission, known as the 8L90, in the 2015 Chevrolet Corvette. The rated turbine torque capacity is 1000 Nm. This transmission replaces the venerable 6L80 six speed automatic. The objectives behind creation of this transmission are improved fuel economy, performance, and NVH. Packaging in the existing vehicle architecture and high mileage dependability are the givens. The architecture is required to offer low cost for a rear drive eight speed transmission while meeting the givens and objectives. An eight speed powerflow, invented by General Motors, was selected. This powerflow yields a 7.0 overall ratio spread, enabling improved launch capability because of a deeper first gear ratio and better fuel economy due to lower top gear N/V capability, relative to the 6L80. The eight speed ratios are generated using four simple planetary gearsets, two brake clutches, and three rotating clutches.
Journal Article

A Two Degree of Freedom, Lumped Inertia Model for Automatic Transmission Clutch-to-Clutch Shift Dynamics

2014-04-01
2014-01-1782
This paper presents a methodology to represent automatic transmission clutch-to-clutch shift dynamics with a two degree of freedom, lumped inertia model. The method of reducing the automatic transmission to a lumped, two inertia model as a function of shift and input shaft acceleration is detailed using a full kinematic representation of the automatic transmission. For a given clutch-to-clutch shift maneuver there are two dependent equations that utilize the two lumped inertias and represent the response of the transmission system from input to output shaft. Applicability of the method is shown for planetary automatic and layshaft dual clutch transmissions. Typical clutch-to-clutch shift maneuvers are illustrated with the two inertia model for power on upshifts and downshifts.
Journal Article

Analytical Study of a Dog Clutch in Automatic Transmission Application

2014-04-01
2014-01-1775
A dog clutch, if successfully implemented in an automatic transmission, provides better packaging and the potential for improved fuel economy. The technical requirements for this concept are examined through modeling and simulation. As a first step, a physics-based component level model is developed that provides an understanding of the basic contact and impact dynamics. The model is compared to a built-in AMESim block to establish confidence. This component level model is then integrated into a powertrain system model within the AMESim environment. As a test bed, the powertrain model is exercised to simulate a friction plate to dog clutch shift in a 6-speed automatic transmission. The analysis helps to define the slip speed target at the onset of the dog clutch engagement while ensuring shift requirements are met. Finally, the model is validated by comparing the simulated results with measured dynamometer data.
X