Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Regenerative Braking on Foundation Brake Performance

2010-10-10
2010-01-1681
Regenerative braking is one of the key enablers of improved energy efficiency and extension of driving range in parallel and series hybrid, and electric-only vehicles. It is still used in conjunction with friction brakes, due to the enormous amount of energy dissipated in maximum effort stops (and the lack of a competitive alternate technology to accommodate this power level), and to provide braking when on-board energy storage/dissipation devices cannot store enough energy to support braking. Although vehicles equipped with regenerative braking are becoming more and more commonly available, there is little published research on what the dramatic reduction in friction brake usage means to the function of the friction brakes themselves. This paper discusses -with supporting data from analysis and physical tests - some of the considerations for friction brakes related to usage on vehicles with regenerative braking, including corrosion, off-brake wear, and friction levels.
Journal Article

Virtual Tire Data Influence on Vehicle Level Handling Performance

2015-04-14
2015-01-1570
This study presents the comparison of vehicle handling performance results obtained using physical test tire data and a tire model developed by means of Finite Element Method. Real tires have been measured in laboratory to obtain the tire force and moment curves in terms of lateral force and align torque as function of tire slip angle and vertical force. The same tire construction has been modeled with Finite Element Method and explicit formulation to generate the force and moment response curves. Pacejka Magic Formula tire response models were then created to represent these curves from both physical and virtual tires. In the sequence, these tire response models were integrated into a virtual multibody vehicle model developed to assess handling maneuvers.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Frictional Performance Test for Transmission and Drive Train Oils

1991-02-01
910745
Lubricating oil affects the performance of friction materials in transmission, steering and brake systems. The TO-2 Test measured friction retention characteristics of lubricating oils used with sintered bronze friction discs. This paper introduces a new friction performance test for drive train lubricants that will be used to support Caterpillar's new transmission and drive train fluid requirements, TO-4, which measures static and dynamic friction, wear, and energy capacity for six friction materials, and replaces the TO-2 test. The new test device to be introduced is an oil cooled, single-faced clutch in the Link Engineering Co. M1158 Oil/Friction Test Machine.
Technical Paper

Eliminating Caliper Piston Knock Back In High Performance Vehicles

2006-10-08
2006-01-3197
Powerful vehicles that are adequately designed to corner at high speeds can generate very high lateral forces at tire-road interface. These forces are counter balanced by chassis, suspension and brake components allowing the vehicle to confidently maneuver around a corner. Although these components may not damage under such high cornering loads, elastic deflections can significantly alter a vehicles performance. One such phenomenon is increased brake pedal travel, to engage brakes, after severe cornering maneuvers. Authors of this paper have worked together to solve exactly this problem on a very powerful luxury segment car.
Journal Article

Brake System and Subsystem Design Considerations for Race Track and High Energy Usage Based on Fade Limits

2008-04-14
2008-01-0817
The friction material is arguably at the heart of any brake system, with its properties taking one of the most important roles in defining its performance characteristics. High performance applications, such as race track capable brake systems in high powered vehicles, exert considerable stress on the friction materials, in the form of very high heat flux loads, high clamp and brake torque loads, and high operating temperatures. It is important, for high performance applications, to select capable friction materials, and furthermore, it is important to understand fully what operating conditions the friction material will face in the considered application.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Technical Paper

Using the Hybrid FE-SEA Method to Predict and Diagnose Component Transmission Loss

2007-05-15
2007-01-2172
This paper investigates the application of the Hybrid FE-SEA method to the prediction of the Transmission Loss (TL) of a front-of-dash component. SEA subsystems are used to represent the source and receiving chambers of a TL test suite and an FE structural subsystem is used to represent the dash component. The potential advantages of the Hybrid FE-SEA method for this application are that: (i) it can provide detailed narrowband predictions of the radiation efficiency and TL of a given component across a broad frequency range and (ii) the computational cost of the approach is typically several orders of magnitude less than that of traditional low frequency FE/BEM/IEM methods. The approach is also potentially well suited to existing analysis processes since information from detailed component level models can be used to update and refine targets obtained from system level SEA models (the use of a common environment for such models simplifies model management).
Technical Paper

Vehicle Implementation of a GM RWD Six-Speed Integrated-Friction-Launch Automatic Transmission

2007-08-05
2007-01-3747
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
Technical Paper

Development of an Electronically-Controlled, Limited-Slip Differential (eLSD) for FWD Applications

2007-04-16
2007-01-0925
Limited-slip differentials improve traction and handling when compared to open differentials, but offer no active modulation and can compromise typical driving. A number of passive control systems exist that attempt to reduce this compromise. Electronically controlled limited-slip differentials (eLSD) are being introduced that allow active control of the differential in all driving situations and can be operated as an open differential, a fully locked differential, or at any point between these extremes. Such an eLSD system was implemented in two General Motors front wheel drive cars-one on an automatic transmission and applied by the transmission pump, the other on a manual transmission and applied by an external pump. This eLSD system contains a multi-plate wet clutch connected to the differential carrier and right side half-shaft of an all wheel drive capable transmission.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Calibrating and Protecting Microphones to Allow Acoustic Measurements in Hazardous Environments

2009-05-19
2009-01-2163
Performing acoustic measurements on or near engines, transmissions, as well as in other circumstances where the environment is hazardous and harsh for microphones requires special precautions. Fluids inevitably leak, and the possibility of transducer damage can be very high without proper protection. Properly protecting microphones during testing allows for consistent data quality in these hazardous and difficult environments. While this paper will present the use of a 5 mil Nitrile cover which protects against many fluids within the scope of automotive testing, including water, hydrocarbons, and alcohols, as well as having good heat resistance and high strength, the concepts developed are applicable to other types of microphone protective mechanisms. Acoustic sensitivity was measured and used to calculate the change of the microphone's response after the treatment is applied, as well as after being exposed to various contaminants.
Technical Paper

Modeling, Design and Validation of an Exhaust Muffler for a Commercial Telehandler

2009-05-19
2009-01-2047
This paper describes the design, development and validation of a muffler for reducing exhaust noise from a commercial tele-handler. It also describes the procedure for modeling and optimizing the exhaust muffler along with experimental measurement for correlating the sound transmission loss (STL). The design and tuning of the tele-handler muffler was based on several factors including overall performance, cost, weight, available space, and ease of manufacturing. The analysis for predicting the STL was conducted using the commercial software LMS Virtual Lab (LMS-VL), while the experimental validation was carried out in the laboratory using the two load setup. First, in order to gain confidence in the applicability of LMS-VL, the STL of some simple expansion mufflers with and without extended inlet/outlet and perforations was considered. The STL of these mufflers were predicted using the traditional plane wave transfer matrix approach.
Technical Paper

Model Based Design Accelerates the Development of Mechanical Locomotive Controls

2010-10-05
2010-01-1999
Smaller locomotives often use mechanical transmissions instead of diesel-electric drive systems typically used in larger locomotives. This paper discusses how Model Based Design was used to develop the complete drive train control system for a 24 ton sugar cane locomotive. A complete MATLAB Simulink machine model was built to fully test and verify the shift control logic, traction control, vehicle speed limiting, and braking control for this locomotive application before it was commissioned. The model included the engine, torque converter, planetary transmission, drive line, and steel on steel driving surface. Simulation was used to debug all control code and test and refine control strategies so that the initial field commissioning in remote Australia was executed very quickly with minimal engineering support required.
Technical Paper

Brake Response Time Measurement for a HIL Vehicle Dynamics Simulator

2010-04-12
2010-01-0079
Vehicle dynamics simulation with Hardware In the Loop (HIL) has been demonstrated to reduce development and validation time for dynamic control systems. For dynamic control systems such as Anti-lock Braking System (ABS) and Electronic Stability Control (ESC), an accurate vehicle dynamics performance simulation system requires the Electronic Brake Control Module (EBCM) coupled with the vehicles brake system hardware. This kind of HIL simulation-specific software tool can further increase efficiency by means of automation and optimization of the development and validation process. This paper presents a method for HIL vehicle dynamics simulator optimization through Brake Response Time (BRT) correlation. The paper discusses the differences between the physical vehicle and the HIL vehicle dynamics simulator. The differences between the physical and virtual systems are used as factors in the development of a Design Of Experiment (DOE) quantifying HIL simulator performance.
Technical Paper

Adaptation of Four-Stroke Motorcycle Engine to Continuously Variable Transmission for Snowmobile Application

2003-09-15
2003-32-0083
The successful implementation of a clean, quiet, high-performance four-stroke motorcycle engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive, and environmentally friendly. The following paper describes the conversion process in detail with actual dynamometer and field test data. The vehicle meets the proposed 2010 EPA snowmobile emissions regulations and is quieter than a stock snowmobile. The snowmobile not only addresses environmental concerns, it is economical as well, with an approximate cost of $5874.
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

Target Detection Distances and Driver Performance with Swiveling HID Headlamps

2004-05-10
2004-01-2258
Twent-two participants of varying ages detected roadside targets in two consecutive dynamic evaluations of a horizontally swiveling headlamp vehicle and a vehicle with the same headlamps that did not swivel. Participants detected targets as they drove unlighted low-speed public roads. Scenarios encountered were intersection turns, and curves with approximate radii of 70-90m, 120-140m, 170-190m, and 215-220m. Results from the first study found improved detection distances from the swiveling headlamps in left curves, but unexpectedly decreased detection distances in larger radius right hand curves. The swiveling algorithm was altered for the second study, and the headlamps used did not have the same beam pattern as in the first study. Results from the second study again found improved detection distances from the swiveling headlamps while in the larger radius right hand curves fixed and swivel were not statistically different.
Technical Paper

Application of Modal Transient Dynamics to Calculate Body Fatigue Life

2001-10-16
2001-01-3087
The methodology of predicting analytical fatigue life of automotive body structures using two commercially available computer codes, NASTRAN and NCODE is described. Modal transient durability simulations are improved with use of residual vectors incorporating inertia relief basis functions. Simulations consisting of hundreds of thousand finite elements and hours of road loads are routine.
Technical Paper

Development of Transmission Hardware-in-the-Loop Test System

2003-03-03
2003-01-1027
The automotive industry has long relied on vehicle testing to evaluate drive train components for new vehicle applications. In the past it has been impossible to fully evaluate components such as transmissions in a laboratory environment using electric motors as prime movers and absorbers. Although some durability and performance testing can be accomplished on such test stands it is impossible to perform high fidelity controller calibrations, durability tests, and NVH evaluations. Since the electric motors on these test stands cannot duplicate the exact characteristics of an engine such as inertia and firing pulses many manufacturers have resorted to vehicle testing or engine driven testing. Vehicle and engine based tests have many downfalls that could be avoided through the use of a laboratory based test system with electric prime movers. Vehicle testing with human drivers is often subjectively controlled and the exact test conditions are often unrepeatable.
X