Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

On the Suitability of a New High-Power Lithium Ion Battery for Hybrid Electric Vehicle Applications

2003-06-23
2003-01-2289
Due to the low cost of the battery cells and excellent performance at ambient temperature, Lithium-ion (Li-ion) battery is a promising technology for propulsion applications. However, the performance of Li-ion batteries erodes drastically at extreme temperatures (above 65 °C or below 0 °C). Therefore, in order to maintain battery life and performance, it is crucial to keep the batteries within the temperature range where their operating characteristics are optimal. The need for expensive and complex thermal management systems has in fact kept the Li-ion technology from becoming the first choice for Hybrid Electric Vehicle (HEV) applications. In this paper, we propose a Phase Change Material (PCM) for the temperature control. Due to its high heat capacity, PCM absorbs the heat dissipated by the battery. As long as the heat emitted by the battery does not melt the PCM completely, the system is stable.
X