Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Characterization of the Three Phase Catalytic Wet Oxidation Process in the International Space Station (ISS) Water Processor Assembly

2000-07-10
2000-01-2252
A three phase catalytic mathematical model was developed for analysis and optimization of the volatile reactor assembly (VRA) used on International Space Station (ISS) Water Processor. The Langmuir-Hinshelwood Hougen-Watson (L-H) expression was used to describe the surface reaction rate. Small column experiments were used to determine the L-H rate parameters. The test components used in the experiments were acetic acid, acetone, ethanol, 1-propanol, 2-propanol and propionic acid. These compounds are the most prevalent ones found in the influent to the VRA reactor. The VRA model was able to predict performance of small column data and experimental data from the VRA flight experiment.
Technical Paper

Adaptive Cycle Engines vs. Electric Motors: A Comparison on Standard Drive Schedules

2024-04-09
2024-01-2097
Adaptive Cycle Engines, where compression and expansion events do not follow a fixed sequence but rather take place depending on demand, are competitive against electric motors because of their higher power density, lower carbon footprint with current energy sources, and predicted ability to use any kind of renewable fuel. The advantage of Adaptive Cycle Engines is greater whenever the powerplant has at least two distinct operating modes: one for high output, and one for high energy economy. This paper compares the well-to-wheels CO2 emissions and pre-tax costs when operating powerplants based on Adaptive Cycle Engines and on electric motors under several scenarios: passenger car, on-road heavy-duty vehicle, and light aircraft.
X