Refine Your Search

Topic

Search Results

Journal Article

Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles

2010-10-25
2010-01-2176
The US Army is currently assessing the feasibility and defining the requirements of a Single Common Powertrain Lubricant (SCPL). This new lubricant would consist of an all-season (arctic to desert), fuel-efficient, multifunctional powertrain fluid with extended drain capabilities. As a developmental starting point, diesel engine testing has been conducted using the current MIL-PRF-46167D arctic engine oil at high temperature conditions representative of desert operation. Testing has been completed using three high density military engines: the General Engine Products 6.5L(T) engine, the Caterpillar C7, and the Detroit Diesel Series 60. Tests were conducted following two standard military testing cycles; the 210 hr Tactical Wheeled Vehicle Cycle, and the 400 hr NATO Hardware Endurance Cycle. Modifications were made to both testing procedures to more closely replicate the operation of the engine in desert-like conditions.
Technical Paper

Evaluation of Possible Methanol Fuel Additives for Reducing Engine Wear and/or Corrosion

1990-10-01
902153
The use of fuel additives is one possible approach to reduce wear and corrosion in methanol fueled automobile engines. One hundred and six compounds added to M100 fuel in modest concentrations (1%) were tested in a Ball on Cylinder Machine (BOCM) for their ability to improve lubricity. The most promising candidates were then tested in an engine using a modified ASTM Sequence V-D wear screening test. Additive performance was measured by comparing the buildup of wear metals in the oil to that obtained from an engine fueled with neat M100. The BOCM method of evaluating the additive candidates proved inadequate in predicting abrasive engine wear under the test conditions utilized for this research program.
Technical Paper

Frictional Performance Test for Transmission and Drive Train Oils

1991-02-01
910745
Lubricating oil affects the performance of friction materials in transmission, steering and brake systems. The TO-2 Test measured friction retention characteristics of lubricating oils used with sintered bronze friction discs. This paper introduces a new friction performance test for drive train lubricants that will be used to support Caterpillar's new transmission and drive train fluid requirements, TO-4, which measures static and dynamic friction, wear, and energy capacity for six friction materials, and replaces the TO-2 test. The new test device to be introduced is an oil cooled, single-faced clutch in the Link Engineering Co. M1158 Oil/Friction Test Machine.
Technical Paper

Filtration Requirements and Evaluation Procedure for a Rotary Injection Fuel Pump

1997-10-01
972872
A cooperative research and development program was organized to determine the critical particle size of abrasive debris that will cause significant wear in rotary injection fuel pumps. Various double-cut test dusts ranging from 0-5 to 10-20 μm were evaluated to determine which caused the pumps to fail. With the exception of the 0-5-μm test dust, all other test dust ranges evaluated caused failure in the rotary injection pumps. After preliminary testing, it was agreed that the 4-8-μm test dust would be used for further testing. Analysis revealed that the critical particle size causing significant wear is 6-7 μm. This is a smaller abrasive particle size than reported in previously published literature. A rotary injection pump evaluation methodology was developed. During actual operation, the fuel injection process creates a shock wave that propagates back up the fuel line to the fuel filter.
Technical Paper

Evaluation of Six Natural Gas Combustion Systems for LNG Locomotive Applications

1997-10-01
972967
An experimental program to develop a practical natural gas-fueled locomotive engine was conducted. Six natural gas-fueled combustion systems for an EMD 710-type locomotive engine were developed and tested. The six systems were evaluated in terms of NOx and CO emissions, thermal efficiency, knock tolerance, and other practical considerations. Each combustion system was tested at Notch 5, 100-percent load, Notch 8, 80-percent load, and Notch 8, 100-percent load conditions. In general, all of the technologies produced significantly lower NOx emissions than the baseline diesel engine. Based on the results of the tests and other analyses, a late cycle, high-injection pressure (LaCHIP) combustion system, using a diesel pilot-ignited, late cycle injection of natural gas with a Diesel-type combustion process, was determined to provide the most practical combustion system for a natural gas-fueled, EMD 710-powered locomotive.
Technical Paper

Monitoring of Ring Face, Ring Side and Liner Wear in a Mack T-10 Test, using Surface Layer Activation

2007-10-29
2007-01-4002
The API has established lubricant specifications, which include standard tests for ring and liner wear. The Mack T-10 is one such test, performed on a prototype engine with Exhaust Gas Recirculation (EGR). At EOT, the liner wear is measured by profilometry, while the ring wear is measured by weight loss. It was decided to monitor the wear of the rings and liners during a full-length T10 test in order to observe the evolution of the wears and wear rates over the course of the test, by using the Surface Layer Activation (SLA) and Bulk Activation (BA) techniques. Three different radioisotopes were created, one in the liners at the turnaround zone, one in the chromium-containing coating on the ring faces, and one in the iron bulk of the rings. This enabled us to observe the wear characteristics of these three components separately. In particular, we were able to separate the face and side ring wears, which cannot be done with simple weight-loss measurements.
Technical Paper

High-Pressure Injection Fuel System Wear Study

1998-02-23
980869
The critical particle size for a high-pressure injection system was determined. Various double-cut test dusts ranging from 0 to 5 μm to 10 to 20 μm were evaluated to determine which test dust caused the high-pressure system to fail. With the exception of the 0- to 5-μm test dust, all test dust ranges caused failure in the high-pressure injection system. Analysis of these evaluations revealed that the critical particle size, in initiating significant abrasive wear, is 6 to 7 μm. Wear curve formulas were generated for each evaluation. A formula was derived that allows the user to determine if the fuel filter effluent will cause harmful damage to the fuel system based on the number of 5-, 10-, and 15-μm particles per milliliter present. A methodology was developed to evaluate fuel filter performance as related to engine operating conditions. The abrasive methodology can evaluate online filter efficiency and associated wear in a high-pressure injection system.
Technical Paper

Design and Control Considerations for a Series Heavy Duty Hybrid Hydraulic Vehicle

2009-11-02
2009-01-2717
Hybrid hydraulic power trains are a natural fit for heavy duty vehicle applications due to their high power density. This paper describes the analytical formulae available for sizing a series hybrid hydraulic vehicle without changing the engine size. Sizing of pump, accumulator and motor are addressed specifically. A control strategy is also suggested for operating the engine and powertrain pressure close to the best efficiency zones. An example is then given using an FMTV (Family of Medium Tactical Vehicles) platform with a CAT C7 engine. Simulation results are generated using VPSET (Vehicle Propulsion Systems Evaluation Tool), an SwRI-developed vehicle modeling and simulation tool. The hydraulic components are sized according to the recommendations in this paper. The suggested control strategy is implemented in VPSET and performance of the series hydraulic hybrid configuration is compared with that of a conventional powertrain.
Technical Paper

Model Based Design Accelerates the Development of Mechanical Locomotive Controls

2010-10-05
2010-01-1999
Smaller locomotives often use mechanical transmissions instead of diesel-electric drive systems typically used in larger locomotives. This paper discusses how Model Based Design was used to develop the complete drive train control system for a 24 ton sugar cane locomotive. A complete MATLAB Simulink machine model was built to fully test and verify the shift control logic, traction control, vehicle speed limiting, and braking control for this locomotive application before it was commissioned. The model included the engine, torque converter, planetary transmission, drive line, and steel on steel driving surface. Simulation was used to debug all control code and test and refine control strategies so that the initial field commissioning in remote Australia was executed very quickly with minimal engineering support required.
Technical Paper

Optimum Control of a Hydrostatic Powertrain in the Presence of Accessory Loads

2002-03-19
2002-01-1417
In off-highway applications the engine torque is distributed between the transmission (propulsion) and other accessories such as power steering, air conditioning and implements. Electronic controls offer the opportunity to more efficiently manage the control of the engine and transmission as an integrated system. This paper deals with development of a steepest descent algorithm for maximizing the efficiency of hydrostatic transmission along with the engine in the presence of accessory load. The methodology is illustrated with an example. The strategy can be extended to the full hydro-mechanical configuration as required. Applications of this approach include adjusting for component wear and intelligent energy management between different accessories for possible size reduction of powertrain components. The potential benefits of this strategy are improved fuel efficiency and operator productivity.
Technical Paper

Effects of High Temperature and Pressure on Fuel Lubricated Wear

2001-09-24
2001-01-3523
While standardized laboratory-scale wear tests are available to predict the lubricity of liquid fuels under ambient conditions, the reality is that many injection systems operate at elevated temperatures where fuel vaporization is too excessive to perform the measure satisfactorily. The present paper describes a High Pressure High Frequency Reciprocating Rig (HPHFRR) purposely designed to evaluate fuel lubricity in a pressurized environment at temperatures of up to 300°C. The remaining test parameters are identical to those of the widely standardized High Frequency Reciprocating Rig (HFRR). Results obtained using the HPHFRR indicate that wear rate with poor lubricity fuels is strongly sensitive to both temperature and oxygen partial pressure and may be orders of magnitude higher than at ambient conditions. Surprisingly however, wear rate was found to decrease dramatically at temperatures above 100°C, possibly due to evaporation of dissolved moisture.
Technical Paper

Effect of Low-Lubricity Fuels on Diesel Injection Pumps - Part II:Laborator Evaluation

1992-02-01
920824
This paper is the second of two that describe the effects of low-lubricity fuels on diesel injection pump performance. The first paper describes the primary failure mechanisms and wear processes in a number of failed pumps removed from both military and civilian vehicles that had been operated on Jet A-1 and diesel fuels. However, the multitude of unregulated parameters in practical operation renders quantitative comparison between different fuels and pump combinations impractical. This paper describes the degradation in pump performance and the wear processes associated with fuels of varying lubricity in the well-defined environment of a pump test stand. The test methodology concentrates on those areas previously demonstrated to be most susceptible to wear. The results indicate that pump durability is reduced by highly refined low-viscosity fuels, but may be successfully counteracted by either improved metallurgy or lubricity additives.
Technical Paper

Comparison of Hydrocarbon Measurement with FTIR and FID in a Dual Fuel Locomotive Engine

2016-04-05
2016-01-0978
Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Technical Paper

The Use of Radioactive Tracer Technology in Studying Lubricant Chemistry to Enhance Bearing and Ring Wear Control in an Operating Engine

1994-10-01
941982
Radioactive tracer technology (RAT) is an important tool in measuring component wear in an operating engine on a real-time basis. This paper will discuss the use of RAT to study and evaluate boundary lubricant and surfactant chemistries aimed at providing benefits in wear control. In particular, RAT was employed to study ring and bearing wear as a function of engine operating condition (speed, load, and temperature) and lubricant characteristics. Prior to testing, the engine's compression rings and connecting rod bearings were subjected to bulk thermal neutron bombardment in a nuclear reactor to produce artificial radioisotopes that were separately characteristic of the ring and bearing wear surfaces. The irradiated parts were installed in the test engine, after which testing to a specific test matrix was accomplished.
Technical Paper

Diesel Fuel Lubricity

1995-02-01
950248
The United States and Europe are mandating increasingly severe diesel fuel specifications, particularly with respect to sulfur content, and in some areas, aromatics content. This trend is directed towards reducing vehicle exhaust emissions and is generally beneficial to fuel quality, ignition ratings, and stability. However, laboratory studies, as well as recent field experience in Sweden and the United States, indicate a possible reduction in the ability of fuels to lubricate sliding components within the fuel injection system. These factors, combined with the trend toward increasing injection pressure in modern engine design, are likely to result in reduced durability and failure of the equipment to meet long-term emissions compliance. The U.S. Army Belvoir Fuels and Lubricants Research Facility (BFLRF) located at Southwest Research Institute (SwRI) developed an accelerated wear test that predicts the effects of fuel lubricity on injection system durability.
Technical Paper

Design Improvements of an Automatic Tire Inflation System for Long Haul Trucks

1995-11-01
952591
An Automatic Tire Inflation System (ATIS), specifically designed for use on commercial long haul trailers underwent complete testing and evaluation in 1993/1994.1 Testing and evaluation included a field test of a prototype system and a controlled laboratory evaluation of the Rotary Union which is the only component subject to wear. The testing of the prototype system indicated that design improvements were necessary before the system could be installed in fleet operations. The design improvements were completed and field installation of production ATIS began. The design improvements were intended to improve overall system durability, decrease installation time, to have less effect on the axle structure than the original design, implement the use of SAE or DOT Approved pressure components and increase overall dependability of the system. ATIS systems have now been developed and tested for most domestic trailer axle configurations.
Technical Paper

Contamination Sensitivity of Automotive Components

1997-02-24
970552
System contamination caused by contaminates or small particles built-in, self-generated, or inhaled from environment presents severe problems. The problems include but are not limited to the malfunctioning of valves, pumps, seals and injectors or lock-up of these components; increased wear of bearings, piston rings, and other friction components; and degradated machine performance. In general, system contamination changes a deterministic system into a stochastic system and shortens machinery service life. In this paper, these contamination problems are discussed in categories and associated analysis, testing and computer modeling methodologies are also discussed.
Technical Paper

The Use of Radioactive Tracer Technology to Evaluate Engine Wear Under the Influences of Advanced Combustion System Operation and Lubricant Performance

2005-10-24
2005-01-3689
Radioactive tracer technology is an important tool for measuring component wear on a real-time basis and is especially useful in measuring engine wear as it is affected by combustion system operation and lubricant performance. Combustion system operation including the use of early and/or late fuel injection and EGR for emissions control can have a profound effect on aftertreatment contamination and engine reliability due to wear. Liner wear caused by localized fuel impingement can lead to excessive oil consumption and fuel dilution can cause excessive wear of rings and bearings. To facilitate typical wear measurement, the engine's compression rings and connecting rod bearings are initially exposed to thermal neutrons in a nuclear reactor to produce artificial radioisotopes that are separately characteristic of the ring and bearing wear surfaces.
X