Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels

2010-04-12
2010-01-0741
This paper reports the development of new fuel ignition quality and combustion experiments performed using the Ignition Quality Tester (IQT). Prior SAE papers (961182, 971636, 1999-01-3591, and 2001-01-3527) documented the development of the IQT constant volume combustion chamber experimental apparatus to measure ignition qualities of diesel-type fuels. The ASTM International test method D6890 was developed around the IQT device to allow the rapid determination of derived cetane number (DCN). Interest in chemical kinetic models for the ignition of diesel and biodiesel model compounds is increasing to support the development of advanced engines and fuels. However, rigorous experimental validation of these kinetic models has been limited for a variety of reasons. Shock tubes and rapid compression machines are typically limited to premixed gas-phase studies, for example.
Journal Article

Optical Investigation of UHC and CO Sources from Biodiesel Blends in a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-04-12
2010-01-0862
The influence of soy- and palm-based biofuels on the in-cylinder sources of unburned hydrocarbons (UHC) and carbon monoxide (CO) was investigated in an optically accessible research engine operating in a partially premixed, low-temperature combustion regime. The biofuels were blended with an emissions certification grade diesel fuel and the soy-based biofuel was also tested neat. Cylinder pressure and emissions of UHC, CO, soot, and NOx were obtained to characterize global fuel effects on combustion and emissions. Planar laser-induced fluorescence was used to capture the spatial distribution of fuel and partial oxidation products within the clearance and bowl volumes of the combustion chamber. In addition, late-cycle (30° and 50° aTDC) semi-quantitative CO distributions were measured above the piston within the clearance volume using a deep-UV LIF technique.
Journal Article

An Investigation into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions from a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-05-05
2010-01-1470
The behavior of the engine-out UHC and CO emissions from a light-duty diesel optical engine operating at two PPCI conditions was investigated for fifteen different fuels, including diesel fuels, biofuel blends, n-heptane-iso-octane mixtures, and n-cetane-HMN mixtures. The two highly dilute (9-10% O₂) early direct injection PPCI conditions included a low speed (1500 RPM) and load (3.0 bar IMEP) case~where the UHC and CO have been found to stem from overly-lean fuel-air mixtures~and a condition with a relatively higher speed (2000 RPM) and load (6.0 bar IMEP)~where globally richer mixtures may lead to different sources of UHC and CO. The main objectives of this work were to explore the general behavior of the UHC and CO emissions from early-injection PPCI combustion and to gain an understanding of how fuel properties and engine load affect the engine-out emissions.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Journal Article

Combined Effects of Multi-Pulse Transient Plasma Ignition and Intake Heating on Lean Limits of Well-Mixed E85 DISI Engine Operation

2014-10-13
2014-01-2615
Well-mixed lean SI engine operation can provide improvements of the fuel economy relative to that of traditional well-mixed stoichiometric SI operation. This work examines the use of two methods for improving the stability of lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are compared to standard SI operation using a conventional high-energy inductive ignition system without intake air preheating. E85 is the fuel chosen for this study. The multi-pulse transient plasma ignition system utilizes custom electronics to generate 10 kHz bursts of 10 ultra-short (12ns), high-amplitude pulses (200 A). These pulses were applied to a custom spark plug with a semi-open ignition cavity. High-speed imaging reveals that ignition in this cavity generates a turbulent jet-like early flame spread that speeds up the transition from ignition to the main combustion event.
Technical Paper

Development of the Active Sound Generation Technology Using Motor Driven Power Steering System

2020-09-30
2020-01-1536
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Technical Paper

Frictional Performance Test for Transmission and Drive Train Oils

1991-02-01
910745
Lubricating oil affects the performance of friction materials in transmission, steering and brake systems. The TO-2 Test measured friction retention characteristics of lubricating oils used with sintered bronze friction discs. This paper introduces a new friction performance test for drive train lubricants that will be used to support Caterpillar's new transmission and drive train fluid requirements, TO-4, which measures static and dynamic friction, wear, and energy capacity for six friction materials, and replaces the TO-2 test. The new test device to be introduced is an oil cooled, single-faced clutch in the Link Engineering Co. M1158 Oil/Friction Test Machine.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

1998-02-23
980901
In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

Convergence of Laboratory Simulation Test Systems

1998-02-23
981018
Laboratory Simulation Testing is widely accepted as an effective tool for validation of automotive designs. In a simulation test, response data are measured whilst a vehicle is in service or tested at a proving ground. These responses are reproduced in the laboratory by mounting the vehicle or a subassembly of the vehicle in a test rig and applying force and displacements by servo hydraulic actuators. The data required as an input to the servo hydraulics, the drive files, are determined by an iterative procedure which overcomes the non linearity in the test specimen and the test rig system. Under certain circumstances, the iteration does not converge, converges too slowly or converges and then diverges. This paper uses mathematical and computer models in a study of the reasons why systems fail to convergence and makes recommendations about the management of the simulation test.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

Handheld Fine Water Mist Extinguisher for Spacecraft

2008-06-29
2008-01-2040
Fine water mist has become a commercial technology for fire suppression in multiple applications. With funding from NASA, ADA Technologies, Inc. (ADA) is developing a handheld fine water mist fire extinguisher for use on manned spacecraft and in future planetary habitats. This design employs only water and nitrogen as suppression agents to allow local refill and reuse. The prototype design incorporates features to generate a uniform fine water mist regardless of the direction of the gravitational vector or lack of gravity altogether. The system has been proven to extinguish open fires and hidden fire scenarios in tests conducted at the Colorado School of Mines (CSM). This design can be deployed as a portable extinguisher or as an automated system for local fire protection in instrument racks or storage spaces. Continued development will result in prototype hardware suitable for use on future manned spacecraft.
X