Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Fuel Volatility and Ignition Quality on Combustion and Soot Formation at Fixed Premixing Conditions

2009-11-02
2009-01-2643
This paper presents experimental results for two fuel-related topics in a diesel engine: (1) how fuel volatility affects the premixed burn and heat release rate, and (2) how ignition quality influences the soot formation. Fast evaporation of fuel may lead to more intense heat release if a higher percentage of the fuel is mixed with air to form a combustible mixture. However, if the evaporation of fuel is driven by mixing with high-temperature gases from the ambient, a high-volatility fuel will require less oxygen entrainment and mixing for complete vaporization and, consequently, may not have potential for significant heat release simply because it has vaporized. Fuel cetane number changes also cause uncertainty regarding soot formation because variable ignition delay will change levels of fuel-air mixing prior to combustion.
Journal Article

Ignition Quality Effects on Lift-Off Stabilization of Synthetic Fuels

2015-04-14
2015-01-0792
The ignition and flame stabilization characteristics of two synthetic fuels, having significantly different cetane numbers, are investigated in a constant volume combustion vessel over a range of ambient conditions representative of a compression ignition engine operating at variable loads. The synthetic fuel with a cetane number of 63 (S-1) is characterized by ignition delays that are only moderately longer than n-dodecane (cetane number of 87) over a range of ambient conditions. By comparison, the synthetic fuel with a cetane number of 17 (S-2) requires temperatures approximately 300 K higher to achieve the same ignition delays. The much different ignition characteristics and operating temperature range present a scenario where the lift-off stabilization may be substantially different.
Journal Article

Fundamental Spray and Combustion Measurements of JP-8 at Diesel Conditions

2008-04-14
2008-01-1083
For logistical reasons, the military requires that jet fuel (JP-8, F-34) be used in both jet engines and diesel engines. While JP-8-fueled diesel engines appear to operate successfully in many cases, negative impacts, including engine failures, are occasionally reported. As diesel combustion with JP-8 has not been explored in great detail, fundamental information about JP-8 fuel spray combustion is needed. In this study, we report measurements of liquid-phase penetration length, vapor penetration, and ignition delay made in an optically-accessible combustion vessel over a range of high-temperature, high-pressure operating conditions applicable to a diesel engine. Results show that the liquid-phase penetration of JP-8 is less than that of diesel, owing to the lower boiling point temperatures of JP-8. Despite the more rapid vaporization, the vapor penetration rate of JP-8 matches that of diesel and ignition does not advance.
Journal Article

Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding

2013-04-08
2013-01-0917
This work is a technical review of past research and a synthesis of current understanding of post injections for soot reduction in diesel engines. A post injection, which is a short injection after a longer main injection, is an in-cylinder tool to reduce engine-out soot to meet pollutant emissions standards while maintaining efficiency, and potentially to reduce or eliminate exhaust aftertreatment. A sprawling literature on post injections documents the effects of post injections on engine-out soot with variations in many engine operational parameters. Explanations of how post injections lead to engine-out soot reduction vary and are sometimes inconsistent or contradictory, in part because supporting fundamental experimental or modeling data are often not available. In this paper, we review the available data describing the efficacy of post-injections and highlight several candidate in-cylinder mechanisms that may control their efficacy.
Journal Article

An Experimental Investigation of Low-Soot and Soot-Free Combustion Strategies in a Heavy-Duty, Single-Cylinder, Direct-Injection, Optical Diesel Engine

2011-08-30
2011-01-1812
High-efficiency, clean-combustion strategies for heavy-duty diesel engines are critical for meeting stringent emissions regulations and reducing the costs of aftertreatment systems that are currently required to meet these regulations. Results from previous constant-volume combustion-vessel experiments using a single jet of fuel under quiescent conditions have shown that mixing-controlled soot-free combustion (i.e., combustion where soot is not produced) is possible with #2 diesel fuel. These experiments employed small injector-orifice diameters (≺ 150 μm) and high fuel-injection pressures (≻ 200 MPa) at top-dead-center (TDC) temperatures and densities that could be achievable in modern heavy-duty diesel engines.
Journal Article

Effects of Oxygenated Fuels on Combustion and Soot Formation/Oxidation Processes

2014-10-13
2014-01-2657
The Leaner Lifted-Flame Combustion (LLFC) strategy offers a possible alternative to low temperature combustion or other globally lean, premixed operation strategies to reduce soot directly in the flame, while maintaining mixing-controlled combustion. Adjustments to fuel properties, especially fuel oxygenation, have been reported to have potentially beneficial effects for LLFC applications. Six fuels were selected or blended based on cetane number, oxygen content, molecular structure, and the presence of an aromatic hydrocarbon. The experiments compared different fuel blends made of n-hexadecane, n-dodecane, methyl decanoate, tri-propylene glycol monomethyl ether (TPGME), as well as m-xylene. Several optical diagnostics have been used simultaneously to monitor the ignition, combustion and soot formation/oxidation processes from spray flames in a constant-volume combustion vessel.
Technical Paper

Strategies to Improve Combustion and Emission Characteristics of Dual-Fuel Pilot Ignited Natural Gas Engines

1997-05-01
971712
Dual-fuel pilot ignited natural gas engines have several intrinsic advantages relative to spark ignited; mainly higher thermal efficiency and lower conversion costs. The major drawback is associated with light loads. This paper discusses objectives, approaches, methods and results of the development of strategies which overcome the drawbacks and enhance the advantages. Development of a pilot fuel injection system, having a delivery of only 1 mm3 at a duration of 0.6 ms, was described in a previous paper. This paper concentrates on the results of strategies to reduce unburned methane in the exhaust and to increase the substitution of gas at light loads through skip-fire, by-passing boost air and exhaust gas recirculation techniques. Engine tests proved that with these strategies, diesel fuel replacement of more than 95% over the entire engine operating map, including idle, can be achieved and current and anticipated future emission standards satisfied.
Technical Paper

Accelerometer Based Sensing of Combustion in a High Speed HPCR Diesel Engine

2007-04-16
2007-01-0972
The capability to detect combustion in a diesel engine has the potential of being an important control feature to meet increasingly stringent emission regulations and for the development of alternative combustion strategies such as HCCI and PCCI. In this work, block mounted accelerometers are investigated as potential feedback sensors for detecting combustion characteristics in a high-speed, high pressure common rail (HPCR), 1.9L diesel engine. Accelerometers are positioned in multiple placements and orientations on the engine, and engine testing is conducted under motored, single and pilot-main injection conditions. Engine tests are then conducted at varying injection timings to observe the resulting time and frequency domain changes of both the pressure and acceleration signals.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Chemiluminescence Imaging of Autoignition in a DI Diesel Engine

1998-10-19
982685
Chemiluminescence imaging has been applied to a parametric investigation of diesel autoignition. Time-resolved images of the natural light emission were made in an optically accessible DI diesel engine of the heavy-duty size class using an intensified CCD video camera. Measurements were obtained at a base operating condition, corresponding to a motored TDC temperature and density of 992 K and 16.6 kg/m3, and for TDC temperatures and densities above and below these values. Data were taken with a 42.5 cetane number blend of the diesel reference fuels for all conditions, and measurements were also made with no. 2 diesel fuel (D2) at the base condition. For each condition, temporal sequences of images were acquired from the time of first detectable chemiluminescence up through fully sooting combustion, and the images were analyzed to obtain quantitative measurements of the average emission intensity.
Technical Paper

Investigation of the Relationship Between DI Diesel Combustion Processes and Engine-Out Soot Using an Oxygenated Fuel

2004-03-08
2004-01-1400
The relationship between combustion processes and engine-out soot was investigated in an optically accessible DI diesel engine using diethylene glycol diethyl ether (DGE) fuel, a viable diesel oxygenate. The high oxygen content of DGE enables operation without soot emissions at higher loads than with a hydrocarbon fuel. The high cetane number of DGE enables operation at charge-gas temperatures below those required for current diesel fuels, which may be advantageous for reducing NOx emissions. In-cylinder optical measurements of flame lift-off length and natural luminosity were obtained simultaneously with engine-out soot measurements while varying charge-gas density and temperature. The local mixture stoichiometry at the lift-off length was characterized by a parameter called the oxygen ratio that was estimated from the measured flame lift-off length using an entrainment correlation for non-reacting sprays.
Technical Paper

A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation

2002-03-04
2002-01-0076
In order to comply with 2002 EPA emissions regulations, cooled exhaust gas recirculation (EGR) will be used by heavy duty (HD) diesel engine manufacturers as the primary means to reduce emissions of nitrogen oxides (NOx). A feedforward controlled EGR cooling system with a secondary electric water pump and proportional-integral-derivative (PID) feedback has been designed to cool the recirculated exhaust gas in order to better realize the benefits of EGR without overcooling the exhaust gas since overcooling leads to the fouling of the EGR cooler with acidic residues. A system without a variable controlled coolant flow rate is not able to achieve these goals because the exhaust temperature and the EGR schedule vary significantly, especially under transient and warm-up operating conditions. Simulation results presented in this paper have been determined using the Vehicle Engine Cooling System Simulation (VECSS) software, which has been developed and validated using actual engine data.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

2002-10-21
2002-01-2891
The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing

2018-04-03
2018-01-0300
The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location is a vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors are crucial to this task as the spray produces larger droplets during both theses phases.
Technical Paper

Procedure Development and Experimental Study of Passive Particulate Matter Oxidation in a Diesel Catalyzed Particulate Filter

2012-04-16
2012-01-0851
The passive oxidation of particulate matter (PM) in a diesel catalyzed particulate filter (CPF) was investigated in a series of experiments performed on two engines. A total of ten tests were completed on a 2002 Cummins 246 kW (330 hp) ISM and a 2007 Cummins 272 kW (365 hp) ISL. Five tests were performed on each engine to determine if using engine technologies certified to different emissions regulations has an impact on the passive oxidation characteristics of the PM. A new experimental procedure for passive oxidation testing was developed and implemented for the experiments. In order to investigate the parameters of interest, the engines were initially operated at a steady state loading condition where the PM concentrations, flow rates, and temperatures were such that the accumulation of PM within the CPF was obtained in a controlled manner. This engine operating condition was maintained until a CPF PM loading of 2.2 ±0.2 g/L was obtained.
Technical Paper

Life Assessment of PM, Gaseous Emissions, and Oil Usage in Modern Marine Outboard Engines

2004-09-27
2004-32-0092
Recently, outboard engine technology has advanced significantly. With these new technologies comes a substantial improvement in emissions compared to traditional carbureted two-stroke engines. Some two-stroke gasoline direct injection (GDI) marine outboard engines are now capable of meeting California Air Resources Board 2008 Ultra-Low emissions standards. With improvement of gaseous emissions, studies are now being conducted to assess particulate matter (PM) emissions from all new technology marine outboard engines which include both four-stroke and two-stroke designs. Methods are currently being developed to determine the best way to measure PM from outboard engines. This study assesses gaseous and PM emissions, mutagenic activity of PM and oil consumption of two different technologies over the useful life of the engines.
Technical Paper

Multivariate Regression and Generalized Linear Model Optimization in Diesel Transient Performance Calibration

2013-10-14
2013-01-2604
With stringent emission regulations, aftertreatment systems with a Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) are required for diesel engines to meet PM and NOx emissions. The adoption of aftertreatment increases the back pressure on a typical diesel engine and makes engine calibration a complicated process, requiring thousands of steady state testing points to optimize engine performance. When configuring an engine to meet Tier IV final emission regulations in the USA or corresponding Stage IV emission regulations in Europe, this high back pressure dramatically impacts transient performance. The peak NOx, smoke and exhaust temperature during a diesel engine transient cycle, such as the Non-Road Transient Cycle (NRTC) defined by the US Environmental Protection Agency (EPA), will in turn affect the performance of the aftertreatment system and the tailpipe emissions level.
Technical Paper

Electronic Direct Fuel Injection System Applied to an 1100cc Two-Stroke Personal Watercraft Engine

1998-02-23
980756
Direct injection has been considered the most effective approach to overcome the inherent short-circuiting of fuel in a two-stroke engine. A practical application of this technology on an 1100cc personal watercraft (PWC) engine is described. The experimental results show a drastic improvement in the engine emissions and fuel economy while maintaining good output performance and drive-ability of the PWC tested. The all-electronic, direct fuel injection engine has demonstrated a 76.3% reduction in hydrocarbon (HC) emissions and 43.03 g/kW-h HC plus oxides of nitrogen (NOx) emissions. This HC + NOx level meets the emission standards applicable to the 2006 model year set by the Environmental Protection Agency (EPA) for new gasoline spark-ignition marine engines. Finally some considerations on extending the technology to include combustion control in the areas of both air and spark management, are recommended.
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
X