Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Impact of Lubricant Oil on Regulated Emissions of a Light-Duty Mercedes-Benz OM611 CIDI-Engine

2001-05-07
2001-01-1901
The Partnership for a New Generation Vehicle (PNGV) has identified the compression-ignition, direct-injection (CIDI) engine as a promising technology in meeting the PNGV goal of 80 miles per gallon for a prototype mid-size sedan by 2004. Challenges remain in reducing the emission levels of the CIDI-engine to meet future emission standards. The objective of this project was to perform an initial screening of crank case lubricant contribution to regulated engine-out emissions, particularly when low particulate forming diesel fuel formulations are used. The test engine was the Mercedes-Benz OM611, the test oils were a mineral SAE 5W30, a synthetic (PAO based) SAE 5W30, and a synthetic (PAO based) SAE 15W50, and the test fuels were a California-like certification fuel and an alternative oxygenated diesel fuel.
Technical Paper

Effects of Cetane Number, Cetane Improver, Aromatics, and Oxygenates on 1994 Heavy-Duty Diesel Engine Emissions

1994-03-01
941020
Several studies have investigated the effects of diesel fuel properties on heavy-duty engine emissions. The objective of this CRC-sponsored test program was to determine the effects of oxygenated diesel fuel, and to further investigate the effects of cetane number and aromatic content on emissions from a heavy-duty engine set to obtain transient NOx emissions below 5 and then 4 g/hp-hr. A fuel set was developed with controlled variations in cetane number, aromatics, and oxygen to superette their effects on emissions. Ignition improver was used to increase cetane number of several fuels. Oxygenated diesel fuel was achieved by adding a “glyme” compound to selected fuels to obtain 2 and 4 mass percent oxygen concentrations. With these fuels, emissions were measured over the EPA transient FTP using a prototype 1994 DDC Series 60 tuned for 5 and then 4 g/hp-hr NOx. No exhaust aftertreatment device was used on this engine.
Technical Paper

Effects of Cetane Number, Aromatics, and Oxygenates on Emissions From a 1994 Heavy-Duty Diesel Engine With Exhaust Catalyst

1995-02-01
950250
A Coordinating Research Council sponsored test program was conducted to determine the effects of diesel fuel properties on emissions from two heavy-duty diesel engines designed to meet EPA emission requirements for 1994. Results for a prototype 1994 DDC Series 60 were reported in SAE Paper 941020. This paper reports the results from a prototype 1994 Navistar DTA-466 engine equipped with an exhaust catalyst. A set of ten fuels having specific variations in cetane number, aromatics, and oxygen were used to study effects of these fuel properties on emissions. Using glycol diether compounds as an oxygenated additive, selected diesel fuels were treated to obtain 2 and 4 mass percent oxygen. Cetane number was increased for selected fuels using a cetane improver. Emissions were measured during transient FTP operation of the Navistar engine tuned for a nominal 5 g/hp-hr NOx, then repeated using a 4 g/hp-hr NOx calibration.
Technical Paper

Effects of Cetane Number on Emissions From a Prototype 1998 Heavy-Duty Diesel Engine

1995-02-01
950251
As stringent emission regulations further constrain engine manufacturers by tightening both NOx and particulate emission limits, a knowledge of fuel effects becomes more important than ever. Among the fuel properties that affect heavy-duty diesel engine emissions, cetane number can be very important. Part of the CRC-APRAC VE-10 Project was developed to quantify the effects of cetane number on NOx and other emissions from a prototype 1998 Detroit Diesel Series 60. Three fuels with different natural cetane number (41, 45, 52) were treated with several levels and types of cetane improvers to study a range of cetane number from 40 to 60. Statistical analysis was used to define how regulated emissions from this prototype 1998 engine decreased with chemically-induced cetane number increase. Variation of HC, CO, NOx, and PM were modeled using a combination of a fuel's naturally-occurring cetane number and its total cetane number obtained with cetane improver.
Technical Paper

Comparison of Petroleum and Alternate-Source Diesel Fuel Effects on Light-Duty Diesel Emissions

1983-10-31
831712
Exhaust emission data from several fuel effects studies were normalized and subjected to statistical analyses. The goal of this work was to determine whether emission effects of property variation in alternate-source fuels were similar, less pronounced, or more pronounced than the effects of property variation in petroleum fuels. A literature search was conducted, reviewing hundreds of studies and finally selecting nine which dealt with fuel property effects on emissions. From these studies, 15 test cases were reported. Due to the wide variety of vehicles, fuels, test cycles, and measurement techniques used in the studies, a method to relate them all in terms of general trends was developed. Statistics and methods used included bivariate correlation coefficients, regression analysis, scattergrams and goodness-of-fit determinations.
Technical Paper

Cetane Number Prediction from Proton-Type Distribution and Relative Hydrogen Population

1986-10-01
861521
A theoretical model for predicting cetane number of primary reference fuels from parameters measurable by proton nuclear magnetic resonance is presented. This modeling technique is expanded to include secondary reference fuels, pure hydrocarbons, and commercial-type fuels. An evaluation of the ignition process indicated that not only hydrogen type distribution measurable by proton NMR, but also relative hydrogen population is important in predicting cetane number. Two mathematical models are developed. One predicts cetane number of saturate fuels and the second predicts cetane number of fuels containing aromatic components. The aromatic fuel model is tested using the ASTM Diesel Check Fuels and shown to predict within the standard error of the model.
X