Refine Your Search

Topic

Author

Affiliation

Search Results

Video

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-05-29
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Journal Article

A Demonstration of Dedicated EGR on a 2.0 L GDI Engine

2014-04-01
2014-01-1190
Southwest Research Institute (SwRI) converted a 2012 Buick Regal GS to use an engine with Dedicated EGR™ (D-EGR™). D-EGR is an engine concept that uses fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency [1]. To accomplish reformation of the gasoline in a cost-effective, energy efficient manner, a dedicated cylinder is used for both the production of EGR and reformate. By operating the engine in this manner, many of the sources of losses from traditional reforming technology are eliminated and the engine can take full advantage of the benefits of reformate. The engine in the vehicle was modified to add the following components: the dedicated EGR loop, an additional injector for delivering extra fuel for reformation, a modified boost system that included a supercharger, high energy dual coil offset (DCO) ignition and other actuators used to enable the control of D-EGR combustion.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

Heavy-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2775
This paper presents the fuel consumption results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to a long haul heavy duty vehicle. Based on the simulation modeling, up to 11% in fuel savings is possible using commercially available and emerging technologies applied to a 15L DD15 engine alone. The predicted fuel savings are up to 17% in a Kenworth T700 tractor-trailer unit equipped with a range of vehicle technologies, but using the baseline DD15 diesel engine. A combination of the most aggressive engine and vehicle technologies can provide savings of up to 29%, averaged over a range of drive cycles. Over 30% fuel savings were found with the most aggressive combination on a simulated long haul duty cycle. Note that not all of these technologies may prove to be cost-effective. The fuel savings benefits for individual technologies vary widely depending on the drive cycles and payload.
Journal Article

Analysis Process for Truck Fuel Efficiency Study

2015-09-29
2015-01-2778
Medium- and Heavy Duty Truck fuel consumption and the resulting greenhouse gas (GHG) emissions are significant contributors to overall U.S. GHG emissions. Forecasts of medium- and heavy-duty vehicle activity and fuel use predict increased use of freight transport will result in greatly increased GHG emissions in the coming decades. As a result, the National Highway Traffic Administration (NHTSA) and the United States Environmental Protection Agency (EPA) finalized a regulation requiring reductions in medium and heavy truck fuel consumption and GHGs beginning in 2014. The agencies are now proposing new regulations that will extend into the next decade, requiring additional fuel consumption and GHG emissions reductions. To support the development of future regulations, a research project was sponsored by NHTSA to look at technologies that could be used for compliance with future regulations.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
Journal Article

Optimal Power Management of Vehicle Sourced Military Outposts

2017-03-28
2017-01-0271
This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures. Vehicles with power export capability are an attractive supplement to this electrical power evolution since they are usually on site, would reduce the amount of material for outpost creation, and provide a modular approach to outpost build-up.
Journal Article

HEV Battery Pack Thermal Management Design and Packaging Solutions

2017-03-28
2017-01-0622
Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
Journal Article

Dedicated EGR Vehicle Demonstration

2017-03-28
2017-01-0648
Dedicated EGR (D-EGR) is an EGR strategy that uses in-cylinder reformation to improve fuel economy and reduce emissions. The entire exhaust of a sub-group of power cylinders (dedicated cylinders) is routed directly into the intake. These cylinders are run fuel-rich, producing H2 and CO (reformate), with the potential to improve combustion stability, knock tolerance and burn duration. A 2.0 L turbocharged D-EGR engine was packaged into a 2012 Buick Regal and evaluated on drive cycle performance. City and highway fuel consumption were reduced by 13% and 9%, respectively. NOx + NMOG were 31 mg/mile, well below the Tier 2 Bin 5 limit and just outside the Tier 3 Bin 30 limit (30 mg/mile).
Journal Article

An Efficient, Durable Vocational Truck Gasoline Engine

2016-04-05
2016-01-0660
This paper describes the potential for the use of Dedicated EGR® (D-EGR®) in a gasoline powered medium truck engine. The project goal was to determine if it is possible to match the thermal efficiency of a medium-duty diesel engine in Class 4 to Class 7 truck operations. The project evaluated a range of parameters for a D-EGR engine, including displacement, operating speed range, boosting systems, and BMEP levels. The engine simulation was done in GT-POWER, guided by experimental experience with smaller size D-EGR engines. The resulting engine fuel consumption maps were applied to two vehicle models, which ran over a range of 8 duty cycles at 3 payloads. This allowed a thorough evaluation of how D-EGR and conventional gasoline engines compare in fuel consumption and thermal efficiency to a diesel. The project results show that D-EGR gasoline engines can compete with medium duty diesel engines in terms of both thermal efficiency and GHG emissions.
Journal Article

Analytic Model of Powertrain Drive Cycle Efficiency, with Application to the US New Vehicle Fleet

2016-04-05
2016-01-0902
An analytic model of powertrain efficiency on a drive cycle was developed and evaluated using hundreds of cars and trucks from the US EPA ‘Test Car Lists’. The efficiency properties of naturally aspirated and downsized turbocharged engines were compared for vehicles with automatic transmissions on the US cycles. The resulting powertrain cycle efficiency model is proportional to the powertrain marginal energy conversion efficiency K, which is also its upper limit. It decreases as the powertrain matching parameters, the displacement-to-mass ratio (D/M) and the gearing ratio (n/V), increase. The inputs are the powertrain fuel consumption, the vehicle road load, and the cycle work requirement. They could be modeled simply with only minor approximations through the use of absolute inputs and outputs, and systematic use of scaling. On the Highway test, conventional automatic transmission vehicles of moderate performance achieve between 25% and 30% powertrain efficiency.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
X