Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels

2009-06-15
2009-01-1971
A numerical investigation on a series of Diesel spray experiments in constant-volume vessels is proposed. Non reacting conditions were used to assess the spray models and to determine the grid size required to correctly predict the fuel-air mixture formation process. To this end, not only computed liquid and vapor penetrations were compared with experimental data, but also a detailed comparison between computed and experimental mixture fraction distributions was performed at different distances from the injector. Grid dependency was reduced by introducing an Adaptive Local Mesh Refinement technique (ALMR) with an arbitrary level of refinement. Once the capabilities of the current implemented spray models have been assessed, reacting conditions at different ambient densities and temperatures were considered. A Perfectly Stirred Reactor (PSR) combustion model, based on a direct integration of complex chemistry mechanisms over a homogenous cell, was adopted.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Effects of EGR Dilution and Fuels on Spark Plug Temperatures in Gasoline Engines

2013-04-08
2013-01-1632
The addition of exhaust gas recirculation (EGR) has demonstrated the potential to significantly improve engine efficiency by allowing high CR operation due to a reduction in knock tendency, heat transfer, and pumping losses. In addition, EGR also reduces the engine-out emission of nitrogen oxides, particulates, and carbon monoxide while further improving efficiency at stoichiometric air/fuel ratios. However, improvements in efficiency through enhanced combustion phasing at high compression ratios can result in a significant increase in cylinder pressure. As cylinder pressure and temperature are both important parameters for estimating the durability requirements of the engine - in effect specifying the material and engineering required for the head and block - the impact of EGR on surface temperatures, when combined with the cylinder pressure data, will provide an important understanding of the design requirements for future cylinder heads.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Journal Article

Detailed Kinetic Analysis of HCCI Combustion Using a New Multi-Zone Model and CFD Simulations

2013-09-08
2013-24-0021
A new multi-zone model for the simulation of HCCI engine is here presented. The model includes laminar and turbulent diffusion and conduction exchange between the zones and the last improvements on the numerical aspects. Furthermore, a new strategy for the zone discretization is presented, which allows a better description of the near-wall zones. The aim of the work is to provide a fast and reliable model for carrying out chemical analysis with detailed kinetic schemes. A preliminary sensitivity analysis allows to verify that 10 zones are a convenient number for a good compromise between the computational effort and the description accuracy. The multi-zone predictions are then compared with the CFD ones to find the effective turbulence parameters, with the aim to describe the near-wall phenomena, both in a reactive and non-reactive cases.
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Journal Article

LPL EGR and D-EGR® Engine Concept Comparison Part 2: High Load Operation

2015-04-14
2015-01-0781
The ongoing pursuit of improved engine efficiency and emissions is driving gasoline low-pressure loop EGR systems into production around the globe. The Dedicated EGR (D-EGR®) engine was developed to minimize some of the challenges of cooled EGR while maintaining its advantages. The D-EGR engine is a high efficiency, low emissions internal combustion engine for automotive and off-highway applications. The core of the engine development focused on a unique concept that combines the efficiency improvements associated with recirculated exhaust gas and the efficiency improvements associated with fuel reformation. To outline the differences of the new engine concept with a conventional LPL EGR setup, a turbocharged 2.0 L PFI engine was modified to operate in both modes. The second part of the cooled EGR engine concept comparison investigates efficiency, knock resistance, combustion stability, and maximum load potential at high load conditions.
Journal Article

Potential and Challenges for a Water-Gas-Shift Catalyst as a Combustion Promoter on a D-EGR® Engine

2015-04-14
2015-01-0784
In light of the increasingly stringent efficiency and emissions requirements, several new engine technologies are currently under investigation. One of these new concepts is the Dedicated EGR (D-EGR®) engine. The concept utilizes fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency. While the positive impact of reformate, in particular hydrogen, on gasoline engine performance has been widely documented, the on-board reforming process and / or storage of H2 remains challenging. The Water-Gas-Shift (WGS) reaction is well known and has been used successfully for many years in the industry to produce hydrogen from the reactants water vapor and carbon monoxide. For this study, prototype WGS catalysts were installed in the exhaust tract of the dedicated cylinder of a turbocharged 2.0 L in-line four cylinder MPI engine. The potential of increased H2 production in a D-EGR engine was evaluated through the use of these catalysts.
Journal Article

LPL EGR and D-EGR® Engine Concept Comparison Part 1: Part Load Operation

2015-04-14
2015-01-0783
The ongoing pursuit of improved engine efficiency and emissions are driving gasoline low-pressure loop EGR systems into production around the globe. To minimize inevitable downsides of cooled EGR while maintaining its advantages, the Dedicated EGR (D-EGR®) engine was developed. The core of the D-EGR engine development focused on a unique concept that combines the efficiency improvements associated with recirculated exhaust gas and the efficiency improvements associated with fuel reformation. To outline the differences of the new engine concept with a conventional low-pressure loop (LPL) EGR setup, a turbocharged 2.0 L PFI engine was modified to operate in both modes and also compared to the baseline. The first part of the cooled EGR engine concept comparison investigates efficiency, emissions, combustion stability, and robustness at throttled part load conditions.
Journal Article

Advanced Ignition Systems Evaluations for High-Dilution SI Engines

2014-10-13
2014-01-2625
A series of ignition systems were evaluated for their suitability for high-EGR SI engine applications. Testing was performed in a constant-volume combustion chamber and in a single-cylinder research engine, with EGR rates of up to 40% evaluated. All of the evaluated systems were able to initiate combustion at a simulated 20% EGR level, but not all of the resulting combustion rates were adequate for stable engine operation. High energy spark discharge systems were better, and could ignite a flame at up to 40% simulated EGR, though again the combustion rates were slow relative to that required for stable engine performance. The most effective systems for stable combustion at high EGR rates were systems which created a large effective flame kernel and/or a long kernel lifetime, such as a torch-style prechamber spark plug or a corona discharge igniter.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

Prediction of Driving Cycles by Means of a Co-Simulation Framework for the Evaluation of IC Engine Tailpipe Emissions

2020-06-30
2020-37-0011
The reliable prediction of pollutant emissions generated by IC engine powertrains during the WLTP driving cycle is a key aspect to test and optimize different configurations, in order to respect the stringent emission limits. This work describes the application of an integrated modeling tool in a co-simulation environment, coupling a 1D fluid dynamic code for engine simulation with a specific numerical code for aftertreatment modelling by means of a robust numerical approach, to achieve a complete methodology for detailed simulations of driving cycles. The main goal is to allow an accurate 1D simulation of the unsteady flows along the intake and exhaust systems and to apply advanced thermodynamic combustion models for the calculation of cylinder-out emissions.
Journal Article

Modeling Non-Premixed Combustion Using Tabulated Kinetics and Different Fame Structure Assumptions

2017-03-28
2017-01-0556
Nowadays, detailed kinetics is necessary for a proper estimation of both flame structure and pollutant formation in compression ignition engines. However, large mechanisms and the need to include turbulence/chemistry interaction introduce significant computational overheads. For this reason, tabulated kinetics is employed as a possible solution to reduce the CPU time even if table discretization is generally limited by memory occupation. In this work the authors applied tabulated homogeneous reactors (HR) in combination with different turbulent-chemistry interaction approaches to model non-premixed turbulent combustion. The proposed methodologies represent good compromises between accuracy, required memory and computational time. The experimental validation was carried out by considering both constant-volume vessel and Diesel engine experiments.
Journal Article

Dedicated EGR Vehicle Demonstration

2017-03-28
2017-01-0648
Dedicated EGR (D-EGR) is an EGR strategy that uses in-cylinder reformation to improve fuel economy and reduce emissions. The entire exhaust of a sub-group of power cylinders (dedicated cylinders) is routed directly into the intake. These cylinders are run fuel-rich, producing H2 and CO (reformate), with the potential to improve combustion stability, knock tolerance and burn duration. A 2.0 L turbocharged D-EGR engine was packaged into a 2012 Buick Regal and evaluated on drive cycle performance. City and highway fuel consumption were reduced by 13% and 9%, respectively. NOx + NMOG were 31 mg/mile, well below the Tier 2 Bin 5 limit and just outside the Tier 3 Bin 30 limit (30 mg/mile).
Journal Article

CFD Investigation of the Effect of Fluid-Structure Interaction on the Transmission Loss of ICE Silencers

2016-06-15
2016-01-1815
In the last decades numerical simulations have become reliable tools for the design and the optimization of silencers for internal combustion engines. Different approaches, ranging from simple 1D models to detailed 3D models, are nowadays commonly applied in the engine development process, with the aim to predict the acoustic behavior of intake and exhaust systems. However, the acoustic analysis is usually performed under the hypothesis of infinite stiffness of the silencer walls. This assumption, which can be regarded as reasonable for most of the applications, can lose validity if low wall thickness are considered. This consideration is even more significant if the recent trends in the automotive industry are taken into account: in fact, the increasing attention to the weight of the vehicle has lead to a general reduction of the thickness of the metal sheets, due also to the adoption of high-strength steels, making the vibration of the components a non negligible issue.
X