Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

On the Ignition Behavior of JP-8 in Military Relevant Diesel Engines

2011-04-12
2011-01-0119
U.S. Army ground vehicles predominately use JP-8 as the energy source for ground vehicles based on the ‘one fuel forward policy’. Though this policy was enacted almost twenty years ago, there exists little fundamental JP-8 combustion knowledge at diesel engine type boundary conditions. Nevertheless, current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility and propulsion system packaging requirements of the particular ground vehicle in question.
Journal Article

On the Premixed Phase Combustion Behavior of JP-8 in a Military Relevant Single Cylinder Diesel Engine

2011-04-12
2011-01-0123
Current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility requirements of the particular ground vehicle in question. In either case, such engines traditionally have been calibrated using North American diesel fuel (DF-2) and Jet Propellant 8 (JP-8) compatibility wasn't given much consideration since any associated power loss due to the lower volumetric energy density was not an issue for most applications at then targeted climatic conditions. Furthermore, since the genesis of the ‘one fuel forward policy’ of using JP-8 as the single battlefield fuel there has been limited experience to truly assess fuel effects on diesel engine combustion systems until this decade.
Journal Article

Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine

2015-09-01
2015-01-1830
Non-conventional operating conditions and fuels in diesel engines can produce longer ignition delays compared to conventional diesel combustion. If those extended delays are longer than the injection duration, the ignition and combustion progress can be significantly influenced by the transient following the end of injection (EOI), and especially by the modification of the mixture field. The objective of this paper is to assess how those long ignition delays, obtained by injecting at low in-cylinder temperatures (e.g., 760-800K), are affected by EOI. Two multi-hole diesel fuel injectors with either six 0.20mm orifices or seven 0.14mm orifices have been used in a 2.34L single-cylinder optical diesel engine. We consider a range of ambient top dead center (TDC) temperatures at the start of injection from 760-1000K as well as a range of injection durations from 0.5ms to 3.1ms. Ignition delays are computed through the analysis of both cylinder pressure and chemiluminescence imaging.
Journal Article

The Ignition Behavior of a Coal to Liquid Fischer-Tropsch Jet Fuel in a Military Relevant Single Cylinder Diesel Engine

2012-04-16
2012-01-1197
The U.S. Army currently uses JP-8 for global operations according to the "one fuel forward policy" that was enacted almost twenty years ago in order to help reduce the logistics burden of supplying a variety of fuels for given Department of Defense vehicle and base applications. One particular challenge with using global JP-8 is the lack of or too broad a range of specified combustion and fuel system affecting properties including ignition quality, high temperature viscosity, and lubricity. In addition to these challenges, the JP-8 fuel specification currently allows the use of blending with certain types of synthetic jet fuels up to 50% by volume. This blended fuel also doesn't include an ignition quality or high temperature viscosity specification, but does include a lubricity specification that is much less restrictive than DF-2.
Technical Paper

Analysis of Current Spray Penetration Models and Proposal of a Phenomenological Cone Penetration Model

1996-02-01
960773
A phenomenological zero-dimensional spray penetration model was developed for diesel-type conditions for a constant volume chamber. The spray was modeled as a protruding cone which is well-mixed at its tip after passing through initial primary and secondary breakup zones. The resulting cone model is strictly dependent on injection parameters; density ratio, injection and chamber pressure, nozzle characteristics, and cone angle. The proposed model was compared with data from three different sources and performed well in most cases except for low density environments.
Technical Paper

A Large Scale Mixing Model for a Quiescent Chamber Direct Injection Diesel

1996-02-01
961040
The methodology for predicting the transient mixing rate is presented for a direct injection, quiescent chamber diesel. The mixing process is modeled as a zero-dimensional, large-scale phenomena which accounts for injection rate, cylinder geometry, and engine operating condition. As a demonstration, two different injection schemes were investigated for engine speeds of 1600, 2100, and 2600 rpm. In the first case, the air-fuel ratio was fixed while the injection rate was allowed to vary, but for the second case, the injection duration was fixed and the air-fuel ratio was allowed to vary. For the former case, the resulting mixing rate was also compared with the experimentally determined fuel burning rate. These two quantities appeared to be correlated in some manner for the various engine speeds under investigation.
Technical Paper

Simulation and Comparison of Autoignition of Homogeneous Fuel/Air Mixtures and Sprays in Diesel Engines

2016-04-05
2016-01-0311
All previous correlations of the ignition delay (ID) period in diesel combustion show a positive activation energy, which means that shorter ID periods are achieved at higher charge temperatures. This is not the case in the autoignition of most homogeneous hydrocarbons-air mixtures where they experience the NTC (Negative Temperature Coefficient ) regime in the intermediate temperature range, from about 800 K to 1000 K). Here, the autoignition reactions slow down and longer ID periods are experienced at higher temperatures. Accordingly the global activation energy for the autoignition reactions of homogeneous mixtures should vary from positive to negative values.
X