Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Investigation of Unburnt Hydrocarbon Emissions in a Homogeneous-Charge Late-Injection Diesel-Fueled Engine

2008-06-23
2008-01-1666
Strict NOx and soot emission regulations for Diesel engines have created an interest in low-temperature partially-homogeneous combustion regimes in both the US and Europe. One strategy, Homogeneous-Charge Late-Injection (HCLI) combustion utilizes 55% or more cooled external Exhaust Gas Recirculation (EGR) with a single Direct Injection strategy to control ignition timing. These engines are operated at low temperatures to ensure near zero NOx emissions, implying that fuel in the thermal boundary layers will not reach sufficient temperature to fully oxidize, resulting in Unburnt Hydrocarbon (UHC) and CO emissions. Of particular interest to HCLI engines are the UHC's that are not fully oxidized by the Diesel Oxidation Catalyst (DOC). Experimental measurements reveal that at average equivalence ratios greater than 0.8, methane is the single largest tailpipe-out UHC emission.
Technical Paper

A Multi-dimensional Flamelet Model Framework Applied to Split-injection DI Diesel Engines

2009-06-15
2009-01-1917
A general model framework for investigating various injection strategies in compression ignition engines with both mixture and thermal inhomogeneities is presented using an extended representative interactive flamelet model. The equations describing evolution of chemistry are written for a scalar phase space of either one or two dimensions and an approach for modeling multiple injections is given. The combustion model is solved interactively with the turbulent flow field by coupling with a Reynolds-Averaged Navier-Stokes (RANS) solver. The model is applied in the simulation of a split-injection diesel engine and results are compared to experimental data obtained from a single cylinder research engine.
X