Refine Your Search

Topic

Author

Search Results

Journal Article

Evaluation of Proposed Protocols for Assessing Vehicle LATCH System Usability

2013-04-08
2013-01-1155
This project assessed current or proposed protocols for improving the usability of LATCH (Lower Anchors and Tethers for Children). LATCH hardware in the left second-row position of 98 2011 or 2010 model-year vehicles was evaluated using ISO and SAE LATCH usability rating guidelines. Child restraint/vehicle interaction was assessed using ISO and NHTSA proposed procedures. ISO ratings of vehicle LATCH usability ranged from 41% to 78%, while vehicles assessed using the SAE draft recommended practice met between 2 and all 10 of the recommendations that apply to all vehicles. There was a weak relationship between vehicle ISO usability ratings and the number of SAE recommended practices met by a vehicle. Twenty vehicles with a range of vehicle features were assessed using the ISO vehicle-child restraint form and 7 child restraints; ISO vehicle-child restraint interaction scores ranged from 14% to 86%.
Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Technical Paper

New Concept PFI-Atomizer Fueling System in a Small Single Cylinder SI Engine

2020-09-15
2020-01-2233
This paper presents results from tests using a fuel injection system which uses an ultrasonic atomizer paired with a port fuel injector (PFI). This concept was tested on a four stroke 200 cc spark-ignited two-wheeler engine. A throttle body with a PFI mounted on it was added to the air intake path of the engine, replacing the conventional carburetor. The ultrasonic disc was mounted in such a way, that the injected fuel from the PFI, falls directly on the face of the disc. The atomizer and the PFI were timed and synchronized appropriately using an Arduino® microcontroller, to promote atomization and vaporization of the fuel injected. The atomizer disc was excited using a high frequency oscillator circuit. The engine could be tested at various speeds and loads, corresponding to points which lie on the local drive duty cycle. The engine test results showed improvement in the engine exhaust emissions.
Technical Paper

A Holistic Approach to Develop a Common Rail Single Cylinder Diesel Engine for Bharat Stage VI Emission Legislation

2020-04-14
2020-01-1357
The upcoming Bharat Stage VI (BS VI) emission legislation has put enormous pressure on the future of small diesel engines which are widely used in the Indian market. The present work investigates the emission reduction potential of a common rail direct injection single cylinder diesel engine by adopting a holistic approach of lowering the compression ratio, boosting the intake air and down-speeding the engine. Experimental investigations were conducted across the entire operating map of a mass-production, light-duty diesel engine to examine the benefits of the proposed approach and the results are quantified for the modified Indian drive cycle (MIDC). By reducing the compression ratio from 18:1 to 14:1, the oxides of nitrogen (NOx) and soot emissions are reduced by 40% and 75% respectively. However, a significant penalty in fuel economy, unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are observed with the reduced compression ratio.
Journal Article

Brake Burnishing Effect on AEB Performance

2015-04-14
2015-01-1481
The Insurance Institute for Highway Safety (IIHS) evaluates autonomous emergency braking (AEB) systems as part of its front crash prevention (FCP) ratings. To prepare the test vehicles' brakes, each vehicle must have 200 miles on the odometer and be subjected to the abbreviated brake burnish procedure of Federal Motor Vehicle Safety Standard (FMVSS) 126. Other organizations conducting AEB testing follow the more extensive burnishing procedure described in FMVSS 135; Light Vehicle Brake Systems. This study compares the effects on AEB performance of the two burnishing procedures using seven 2014 model year vehicles. Six of the vehicles achieved maximum AEB speed reductions after 60 or fewer FMVSS 135 stops. After braking performance stabilized, the Mercedes ML350, BMW 328i, and Volvo S80 showed increased speed reductions compared with stops using brand new brake components.
Technical Paper

Fourier Transform Infrared Spectroscopy Models to Predict Cetane Number of Different Biodiesels and Their Blends

2020-04-14
2020-01-0617
The ignition quality of a fuel is described by its cetane number. Experimental methods used to determine cetane number employ Co-operative fuel research (CFR) engine and Ignition quality tester (IQT) which are expensive, have less repeatability and require skilled operation, and hence least preferred. There are many prediction models reported, which involve number of double bonds and number of carbon atoms whose determination is not direct. Using models that relate biodiesel composition to its cetane number is limited by the range of esters involved. Hence, a model to predict cetane number of biodiesels that addresses the limitations of the existing models, without ignoring the influence of factors such as degree of unsaturation and number of carbon atoms, is needed. Fourier transform infrared spectroscopy (FTIR) could be one such method.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
Journal Article

GLORIA: Design and Development of a Calibration Jig for H-Point Machines Used for the Measurement of Head Restraint Geometry

2008-04-14
2008-01-0348
The SAE J826 H-point machine was designed to measure occupant accommodation dimensions relative to a loaded seat. It has become an intrinsic part of various crash dummy set up processes, but it has never had a formal calibration procedure. Whilst H-point location appears to be consistent from one device to another, the weight hanger locations show greater variability, and this can consequently affect the height and backset measurements of head restraints taken with a head restraint measuring device mounted upon the weight hangers. This paper describes the development of a calibration procedure and jig to measure the location of the weight hangers so that adjustments can be made if necessary. This procedure and calibration tool will enable more consistent seat evaluations, dummy set up, and consistently effective anti-whiplash seat designs.
Technical Paper

Risk of Death Among Child Passengers in Front and Rear Seating Positions

1997-11-12
973298
Using 1988-95 data from the Fatality Analysis Reporting System, risk of death was compared among front- and rear-seated passengers ages 12 and younger involved in fatal crashes, controlling for restraint use, passenger airbags, and other variables. Among children sitting in the rear, risk of death was reduced about 35 percent in vehicles without passenger airbags and about 50 percent in vehicles with passenger airbags (difference was not statistically significant). Rear seats were protective for both restrained and unrestrained children. Children were about 10-20 percent less likely to die in rear center than in rear outboard positions.
Technical Paper

Influence of Particle Size of Graphite on Performance Properties of Friction Composites

2007-10-07
2007-01-3967
Non-Asbestos Organic (NAO) brake- material research has been significant in the last decade in an attempt to replace the conventional semi-metallic and asbestos based materials. Influence of ingredients in this multi-ingredient (generally 10-25 in different proportions) system on performance properties, however, is still not thoroughly researched area because of complexity involved and needs intensive efforts to understand this aspect. Graphite is one of the most important and almost inevitable ingredients in friction materials. A wide variety of graphite varying in origin, particle size, crystallinity, thermal conductivity etc. is used by the industry. An in-depth and systematic study on the influence of size of graphite on tribo-performance, however, is not available.
Technical Paper

Studies on Performance and Exhaust Emissions of a CI Engine Operating on Diesel and Diesel Biodiesel Blends at Different Injection Pressures and Injection Timings

2007-04-16
2007-01-0613
The effect of variation in injection pressure and Injection timing on the performance and exhaust emission characteristics of a direct injection, naturally aspirated Diesel engine operating on Diesel and Diesel-Biodiesel Blends were studied. A three-way factorial design consisting of four levels of injection pressure (150,210, 265,320 bar), four levels of injection timing (19° btdc, 21.5° btdc, 26° btdc, and 30.5° btdc) and five different fuel types (D100, B10, B20, B40, and B60) were employed in this test. The experimental analysis shows that when operating with Linseed Oil Methyl Ester-Diesel blends, we could increase the injection pressure by about 25% over the normal value of 20MPa. The engine performance and exhaust emission characteristics of the engine operating on the ester fuels at advanced injection timing were better than when operating at increased injection pressure.
Technical Paper

Measurement Error in Lateral Thoracic Deflection and Deflection Rate Due to Oblique Loading

2007-04-16
2007-01-0705
Anthropometric test devices (ATDs) instrumented with potentiometers and accelerometers are used regularly to assess thoracic injury risk in side impact crash tests. Measurements from these sensors are compared with injury assessment reference values (IARVs) for lateral loading to establish the risk of injury for humans subjected to similar impacts. In crash tests, the deflections and deflection rates derived from these two types of sensors (potentiometers vs. accelerometers) have varying degrees of agreement. In some cases, differences can be relatively large. In the past, it was unclear whether the reason for the differences was off-axis loading that misaligned the accelerometers used in the calculation, an inherent inability of the potentiometer to capture high deflection rates under certain conditions, or some other phenomenon.
Technical Paper

Experimental Evaluation of Mahua based Biodiesel as Supplementary Diesel Fuel

2009-04-20
2009-01-0479
Biodiesel developed from non- edible seeds grown in the wasteland in India can be very effectively utilized in the existing diesel engines used for various applications. This paper presents the results of investigations carried out in studying the fuel properties of mahua oil methyl ester (MOME) and its blend with diesel from 20% to 80% by volume. These properties were found to be comparable to diesel and confirming to both the American and Indian standards. The performance of mahua biodiesel (MOME) and its blend with diesel in a Kirloskar DAF8 engine has been observed. The addition of MOME to diesel fuel has significantly reduced CO, UBHC and smoke emissions but increases the NOx emission slightly. The reductions in exhaust emissions could help in controlling air pollution. The results show that no significant power reduction in the engine operation when operated with blends of MOME and diesel fuel.
Technical Paper

Experimental Study of Variation between Quasi-static and Dynamic Load Deformation Properties of Bovine Medial Collateral Ligaments

2009-04-20
2009-01-0392
In a significant number of automobile crashes involving pedestrians, the ligaments which control the stability of the knee, often get severely loaded. In lateral impact on knee during automotive crashes, varus-valgus motion results in failure of ligament by avulsion or by rupture in the middle region It is known that properties vary in different regions of the ligament. Experimental measurement of tensile load-elongation behavior of the middle region of bovine medial collateral ligament at strain rates of 10−4 /s to 160/s are reported here. The results show that the stress-strain behavior is linear under quasi-static loading whereas it is nonlinear and strain rate sensitive in dynamic loading conditions.
Technical Paper

Child Restraint Durability in High-Speed Crashes

2001-03-05
2001-01-0123
The Insurance Institute for Highway Safety installed a variety of infant, toddler, and booster restraints in vehicles subjected to high-speed frontal offset crash tests to assess the effects of severe crashes on the structural integrity of the restraints and their associated hardware (harnesses, buckles, clips, etc.). The child restraints were inspected before and after each test, and all damage was recorded. In some of the tests, forces and accelerations were recorded on the appropriate size child dummy properly secured in the child restraint. After a single severe crash, most restraints had sustained some damage, albeit minimal. Repeated tests indicated that these child restraints could withstand the forces of an additional crash with only minor additional damage. Dummy injury results suggest that current injury risk curves overstate the risk of neck injury to most properly restrained children.
Technical Paper

Effect of Hybrid III Leg Geometry on Upper Tibia Bending Moments

2001-03-05
2001-01-0169
The knee and ankle joint pivots of the Hybrid III dummy's leg are positioned in approximately the same orientation as the knee and ankle joint rotation centers of a human in a normal driving posture. However, the dummy's leg assembly is not simply a straight member between these two pivots. It is a zigzag-shaped solid link composed of one long straight section in the middle and short angled sections at either end, which form the pivots. The upper and lower tibia load cells are mounted on the straight middle section, making the upper tibia load cell location anterior to the line between the ankle and knee pivots and the lower tibia load cell location slightly posterior to the line between the pivots. Hence, an approximately vertical force on the foot can act along the line behind the upper tibia load cell and in front of the lower tibia load cell, creating bending moments.
Technical Paper

Analysis of Driver Fatalities in Frontal Crashes of Airbag-Equipped Vehicles in 1990-98 NASS/CDS

2001-03-05
2001-01-0156
This study, which is an extension of an earlier study, examined an additional 64 frontal crashes of airbag-equipped vehicles in the 1997-98 National Automotive Sampling System Crashworthiness Data System (NASS/CDS) in which the driver died. The principal cause of death in each case was determined based on an examination of the publicly available case materials, which primarily consisted of the crash narrative, the injury/source summary, and photographs of the crashed vehicle. Results were consistent with the earlier analyses of the 1990-96 NASS/CDS files. In the combined data set (1990-98), gross deformation of the occupant compartment was the leading cause (42 percent) of driver deaths in these 116 frontal crashes. The force of the deploying airbag (16 percent) and ejection from the vehicle (13 percent) also accounted for significant portions of the driver deaths in these frontal crashes. There continues to be little or no evidence that airbags deploy with too little energy.
X