Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Experimental Investigation of Natural Gas-Diesel Dual-Fuel RCCI in a Heavy-Duty Engine

2015-04-14
2015-01-0838
Studies have shown that premixed combustion concepts such as PCCI and RCCI can achieve high efficiencies while maintaining low NOx and soot emissions. The RCCI (Reactivity Controlled Compression Ignition) concept use blending port-injected high-octane fuel with early direct injected high-cetane fuel to control auto-ignition. This paper describes studies on RCCI combustion using CNG and diesel as the high-octane and high-cetane fuels, respectively. The test was conducted on a heavy-duty single cylinder engine. The influence of injection timing and duration of the diesel injections was examined at 9 bar BMEP and1200 rpm. In addition, experiments were conducted using two different compression ratios, (14 and 17) with different loads and engine speeds. Results show both low NOx and almost zero soot emissions can be achieved but at the expense of increasing of unburned hydrocarbon emissions which could potentially be removed by catalytic after-treatment.
Technical Paper

Numerical Analysis of Combustion and Emissions Formation in a Heavy Duty DME Engine

2012-04-16
2012-01-0156
When using dimethyl ether (DME) to fuel diesel engines at high load and speed, applying high amounts of exhaust gas recirculation (EGR) to limit NOX emissions, carbon monoxide (CO) emissions are generally high. To address this issue, the combustion and emission processes in such engines were analyzed with the three-dimensional CFD KIVA3V code. The combustion sub-mechanism (76 species and 375 reactions) was validated by comparing simulated ignition delays and flame velocities to reference data under diesel-like and atmospheric conditions, respectively. In addition, simulated and experimentally determined rate of heat release (RoHR) curves and emission data were compared for a heavy-duty single-cylinder DME engine (displaced volume, 2.02 liters) with DME-adapted piston and nozzle geometries. The simulated RoHR curves captured the main features of the experimentally measured curves, but deviated in the premixed (higher peak) and late combustion phases (too high).
Journal Article

An Experimental Study on the Use of Butanol or Octanol Blends in a Heavy Duty Diesel Engine

2015-09-06
2015-24-2491
Global warming driven by “greenhouse gas” emissions is an increasingly serious concern of both the public and legislators. A potentially potent way to reduce these emissions and conserve fossil fuel resources is to use n-butanol, iso-butanol or octanol (2-ethylhexanol) from renewable sources as alternative fuels in diesel engines. The effects of adding these substances to diesel fuel were therefore tested in a single-cylinder heavy duty diesel engine operated using factory settings. These alcohols have better calorific values, flash points, lubricity, cetane numbers and solubility in diesel than shorter-chain alcohols. However, they have lower cetane numbers than diesel, so either hydrotreated vegetable oil (HVO) or Di-tertiary-butyl peroxide (DTBP) was added to the diesel-alcohol mixtures to generate blends with the same Cetane Number (CN) as diesel.
X