Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

Characteristics of Transient NOx Emissions of HEV under Real Road Driving

2020-04-14
2020-01-0380
To meet the request of China National 6b emission regulations which will be officially implemented in China, firstly including the RDE emission test limits, the transient emissions on real road condition are paid more attention. A non-plug-in hybrid light-duty gasoline vehicles (HEV) sold in the Chinese market was selected to study real road emissions employed fast response NOx analyzer from Cambustion Ltd. with a sampling frequency of 100Hz, which can measure the missing NO peaks by standard RDE gas analyzer now. Emissions from PEMS were also recorded and compared with the results from fast response NOx analyzer. The concentration of NOx emissions before and after the Three Way Catalyst (TWC) of the hybrid vehicle were also sampled and analyzed, and the working efficiency of the TWC in real road driving process was investigated.
Technical Paper

A Subjective Evaluation Method for Sound Insulation of Vehicle Body in Reverberation Room and an Objective Prediction Model

2017-06-05
2017-01-1886
A subjective evaluation method for the air-borne sound insulation of vehicle body in reverberation room is developed and the correlation between the subjective preference and objective noise reduction level (NRL) is investigated in this paper. The stationary vehicle's interior noise is recorded by using a digital artificial head under a given white noise excitation in the reverberation room, which demonstrates more credible than those in traditional road test methods. The recorded noises of six different vehicles are replayed and evaluated subjectively by 22 appraisers in a sound quality room. The paired comparison scoring method is employed and the check and statistic methods for the subjective scores are introduced. The subjective preference is introduced and calculated by the statistics and normalization of the effective scores, which can indicate an overall preference ranking of all the six vehicles numerically.
Technical Paper

A Prediction Method of Fatigue Strength for Crankshaft Fillet Rolling Process

2017-10-08
2017-01-2406
This work addresses the problem of fatigue strength prediction of crankshaft fillet rolling processes to improve its accuracy. It is empirical to usually consider the effect of fillet rolling process on crankshaft fatigue performance. The fatigue performance of rolling process is mainly determined by induced compressive residual stresses, increased hardness and reduced roughness. Because the first two factors are difficult to measure the arc surface of fillet rolled cranks, it is difficult to predict the enhanced rate of crankshaft rolled performance to baseline unrolled’s. In this work a prediction method of fatigue strength for ductile cast iron crankshafts rolling process is presented. This method indirectly predicts the effect of the increased hardness on fatigue performance by the resonant bending fatigue test and modelling of crankshaft fillet rolling dynamic for the induced compressive residual stress.
Technical Paper

Thermal Management and Energy Consumption Balanced Design for Active Grill Shutter Control

2022-03-29
2022-01-0187
Abstract The active grill shutters (AGS) on the vehicle have been widely used in recent years due to increased demand on fuel economy and CO2 emission. The closed AGS helps to reduce air drag by preventing air going into underhood, which results in less engine torque and less fuel consumption. The AGS also need to ensure adequate cooling air for radiator, condenser and other components in the underhood, so that the control strategy should be carefully designed for both thermal management and energy consumption. A sport utility vehicle (SUV) equipped AGS is analyzed, and the AGS control strategy is developed with the help of simulation and experiment. Drag coefficients for series of shutter rotation angles are evaluated using a 3-D full-vehicle model. The maximum air drag coefficient benefit is found to be 9 counts, and most of the benefit is obtained around fully closed status.
Technical Paper

Design Improvement on Plastic Fuel Tank System with Model Bias Prediction

2016-04-05
2016-01-0286
With the increasing development in automotive industry, finite element (FE) analysis with model bias prediction has been used more and more widely in the fields of chassis design, body weight reduction optimization and some components development, which reduced the development cycles and enhanced analysis accuracy significantly. However, in the simulation process of plastic fuel tank system, there is few study of model validation or verification, which results that non-risky design decisions cannot be enhanced due to too much consuming time. In this study, to correct the discrepancy and uncertainty of the simulated finite element model, Bayesian inference-based method is employed, to quantify model uncertainty and evaluate the simulated results based on collected data from real mechanical tests of plastic fuel tanks and FE simulations under the same boundary conditions.
Technical Paper

Dynamic Analysis of Wiper System and Noise Prediction of Blade Reverse

2015-03-30
2015-01-0106
Wiper noise generated in the wiping process is one of the main influence factors affecting the driving comfort. Since the dynamic contact pressure of the contact between a blade and a windshield glass is difficult to be measured, it is also difficult to predict the degree of the wiper noise. In this paper, in the view of the reversal noise problem of a passenger-vehicle windscreen wiper system, the system dynamic models of the both wipers on the sides of the driver and copilot were built as considering the blade deformation and the elastic contact between the blades and the windscreen glass, including the crank pivot, the four linkage mechanism, the wiper blades, the wiper arms and the windscreen glass. The motion of the wiper system and the pressure distributions between the blades and the windscreen glass were analyzed under the half-dry condition.
Technical Paper

The Impact of GDI Injector Deposits on Engine Combustion and Emission

2017-10-08
2017-01-2248
Gasoline direct injection (GDI) engine technology is now widely used due to its high fuel efficiency and low CO2 emissions. However, particulate emissions pose one challenge to GDI technology, particularly in the presence of fuel injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in the Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 55 hours to accumulate injector deposits. The engine spark timing, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gaseous pollutants which include total hydro carbon (THC), NOx (NO and NO2) and carbon dioxide (CO), and particulate emissions were measured before and after the injector fouling test at eight different operating conditions. Test results indicated that mild injector fouling can result in an effect on engine combustion and emissions despite a small change in injector flow rate and pulse width.
Journal Article

A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty

2017-03-28
2017-01-0256
Vehicle weight reduction has become one of the most crucial problems in the automotive industry because that increasingly stringent regulatory requirements, such as fuel economy and environmental protection, must be met. The lightweight design needs to consider various vehicle attributes, including crashworthiness and stiffness. Therefore, in essence, the vehicle weight reduction is a typical Multidisciplinary Design Optimization problem. To improve the computational efficiency, meta-models have been widely used as the surrogate of FE model in the multidisciplinary optimization of large structures. However, these surrogate models introduce additional sources of uncertainties, such as model uncertainty, which may lead to the poor accuracy in prediction. In this paper, a method of corrected surrogate model based multidisciplinary design optimization under uncertainty is proposed to incorporate the uncertainties introduced by both meta-models and design variables.
Technical Paper

Impact Strength Analysis of Body Structure Based on a MBD-FEA Combined Method

2024-04-09
2024-01-2243
In the field of automobile development, sufficient structure strength is the most basic objective to be accomplished. Typically, method of strength analysis could be divided into static strength and dynamic strength. Analysis of static strength constitutes the major part of the development, but the supplement of dynamic strength is also dispensable to assure structural integrity. This paper presents a methodology about analyzing the impact strength of body structure based on a Multi-body Dynamics (MBD) and Finite Element Analysis (FEA) combined method. Firstly, the full vehicle MBD model consists of Curved Regular Grid (CRG) road model, Flexible Ring Tire (FTire) model and dynamic deflection-force bump stop model was built in Adams/Car. Next, Damage Initiation and Evolution Model (DIEM) failure criteria was adopted to describe material failure behavior.
X