Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

High Performance Forged Steel Crankshafts - Cost Reduction Opportunities

1992-02-01
920784
Higher horsepower per liter engines have put more demand on the crankshaft, often requiring the use of forged steel. This paper examines cost reduction opportunities to offset the penalties associated with forged steel, with raw material and machinability being the primary factors evaluated. A cost model for crankshaft processing is utilized in this paper as a design tool to select the lowest cost material grade. This model is supported by fatigue and machinability data for various steel grades. Materials considered are medium carbon, low alloy, and microalloy steels; the effects of sulfur as a machining enhancer is also studied.
Technical Paper

42LE Electronic Four-Speed Automatic Transaxle

1993-03-01
930671
A new electronically controlled transaxle has been put into production for Chrysler's family of LH cars. Among the attributes of this new transaxle are its ability to handle engines of high torque and high power coupled with high-speed shifts. Engine torque management is used in specific operating regimes. A feature of the transaxle is electronic modulation of the converter clutch. A number of logic features have been combined with hardware to provide good performance and shift quality over a wide operating range. An output transfer chain and a hypoid gear set are used to provide torque to the front wheels in a longitudinal power train orientation. Obtaining acceptable endurance life of the hypoid gears within an aluminum housing presented a significant challenge. New approaches were required to provide a chain-sprocket system with acceptable noise characteristics.
Technical Paper

Chrysler 3.5 Liter V-6 Engine

1993-03-01
930875
A new 3.5 liter, 60 degrees V6 engine has been designed specifically for Chrysler's 1993 MY line of mid-size sedans - Dodge Intrepid, Eagle Vision, Chrysler Concorde and New Yorker. This new engine features many new components for enchanced performance. The cylinder head has a single overhead cam, four valve-per - cylinder design. The intake system is a cross-flow design equipped with dual throttle bodies, and the manifold also incorporates a vacuum operated tuning valve that increases the mid-range torque of the engine. A windage tray is used on every engine to reduce drag on the rotating components within the crankcase. Dual knock sensors (one per cylinder bank) are used to take advantage of the aggressive spark advance and high compression ratio. The engine also utilizes a plastic, helical, water pump impeller that contributes to low parasitic power losses. The engine incorporates many components and features to ensure durability.
Technical Paper

New Concept Modular Manual Transmission Clutch and Flywheel Assembly

1992-09-01
922110
Most United States vehicle assembly plants produce significantly more automatic transmission equipped vehicles than manual transmission vehicles. Assembling these two vehicles on a common production line can create complexity problems. This paper describes the design and development of a pre-assembled manual transmission clutch and flywheel modular assembly which reduces most of these problems. This assembly is used on the 1993 model year mini-van with a 2.5L four cylinder engine. This modular clutch system utilizes the same starter ring gear carrier (driveplate) used on automatic transmission equipped vehicles. It pilots into the crankshaft similar to the automatic transmission torque converter. It is balanced as an assembly which results in a lower system imbalance. A significant system piece cost saving, in comparison with today's competitive market, was achieved.
Technical Paper

Engine Misfire Detection by Ionization Current Monitoring

1995-02-01
950003
Engine misfires cause a negative impact on exhaust emissions. Severe cases could damage the catalyst system permanently. These are the basic reasons why CARB (California Air Resources Board) mandated the detection of engine misfires in their OBD II (On-Board Diagnostics II) regulations. For the last several years, automobile manufacturers and their suppliers have been working diligently on various solutions for the “Misfire Detection” challenge. Many have implemented a solution called “Crankshaft Velocity Fluctuation” (CVF), which utilizes the crank sensor input to calculate the variation of the crankshaft rotational speed. The theory is that any misfires will contribute to a deceleration of the crankshaft velocity due to the absence of pressure torque. This approach is marginal at best due to the fact that there could be many contributors to a crankshaft velocity deceleration under various operating conditions. To sort out which is a true misfire is a very difficult task.
Technical Paper

The 1978 Chrysler Torque Converter Lock-Up Clutch

1978-02-01
780100
A torque converter lock-up clutch was introduced by Chrysler Corporation in a majority of its passenger cars in the 1978 model year. The lock-up clutch improves fuel economy by eliminating torque converter slip in direct gear above a predetermined speed. The clutch and its controls were designed to fit within the confines of the existing transmission. The development of the clutch was primarily concerned with achieving adequate endurance life, good shift quality and isolation of torsional vibrations.
Technical Paper

Chrysler Torque Flite Transmission

1958-01-01
580018
THIS paper describes the Chrysler TorqueFlite transmission, a 3-speed unit with torque converter. The discussion includes details of the push-button controls of the automatic transmission, operation of the transmission and hydraulic controls, power transmission through the gearbox, and design of several of the components. The authors think that the TorqueFlite offers to a greater degree the advantages of automatic transmission: ease of operation and maximum power over a wide range of car speeds.
Technical Paper

Energy and the Automobile - General Factors Affecting Vehicle Fuel Consumption

1973-02-01
730518
Since 1968, vehicle weight increases and emissions controls have reduced fuel economy substantially. Additional losses in economy and acceleration will be experienced through 1976. Recommendations are made to lessen the impact of the predicted losses. Factors influencing fuel economy and acceleration are examined for an intermediate car. Changes in engine efficiency and displacement, compression ratio, torque converter, transmission, axle ratio, aerodynamic drag, tires, accessories, vehicle weight, and emissions controls are examined. When practical, the effects of 10% changes are analyzed. Comparisons are also made with a subcompact and a luxury vehicle.
Technical Paper

The Chrysler PowerFlite Transmission

1954-01-01
540261
THE design and construction of the PowerFlite automatic transmission are described by the authors. It is of the torque converter type, some models being water-cooled, while others are direct air cooled. Details of the hydraulic controls are explained, including the one-piece shift valve and the shuttle valve for controlling closed-throttle shifts. It is claimed that this transmission has relative simplicity, light weight, and smoothness of operation.
X