Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Dynamic Flow Study in a Catalytic Converter Using Laser Doppler Velocimetry and High Speed Flow Visualization

1995-02-01
950786
Internal flow characteristics of a close coupled catalytic converter were examined by LDV measurements and high speed flow visualization. Although previous studies have been done on catalytic converters, they were conducted at steady state and using water flow seeded with a small quantity of tracer particles. The purpose of this study was to develop a better understanding of dynamic flows inside catalytic converters. The high speed flow visualization films and LDV results showed that areas of separation and circulation were present in the inlet region of the converter. Backflows into the neck of the converter were also observed. Each cylinder exhausted into a different region of the converter, with the front-middle region having the heaviest amount of flow. Large bursts of flow were created by each cylinder, while other regions of the inlet region showed backflows or very low flow rates. The midsection of the converter had a more uniform overall flow pattern.
Technical Paper

Exciplex Fluorescence Visualization Systems for Pre-Combustion Diagnosis of an Automotive Gasoline Engine

1996-02-01
960826
This paper reports the development of vapor/liquid visualization systems based on an exciplex (excited state complex) formed between dimethyl- or diethyl-substituted aniline and trimethyl-substituted naphthalenes. Quantum yields of individual monomers were measured and the exciplex emission spectra as well as fluorescence quenching mechanisms were analyzed. Among the many systems and formulations investigated in this study, an exciplex consisting of 7% 1,4,6-trimethylnaphthalene (TMN) and 5% N,N-dimethylaniline (DMA) in 88% isooctane was found to be the best system for the laser-induced exciplex fluorescence (LIEF) technique, which is used to observe mixture formation in diesel or spark ignition (SI) engines. Observation of spectrally separated fluorescence from monomer in the gas phase and from exciplex in the gasoline fuel [1] requires that the exciplex forming dopants have boiling points within the distillation range of gasoline (20 to 215°C).
Technical Paper

Quantification of volumetric in-cylinder flow of SI engine usign 3D laser doppler velocimetry

2000-06-12
2000-05-0035
The flow inside of an internal combustion engine is highly complex and varies greatly among different engine types. For a long time IC engine researchers have tried to classify the major mean flow patterns and turbulence characteristics using different measurement techniques. During the last three decades tumble and swirl numbers have gained increasing popularity in mean flow quantification while turbulent kinetic energy has been used for the measurement of turbulence in the cylinder. In this paper, simultaneous 3-D LDV measurements of the in-cylinder flows of the three different engines are summarized for the quantification of the flow characteristics. The ensemble averaged velocity, tumble and swirl motions, and turbulence kinetic energy during the intake and compression strokes were examined from the measured velocity data (approximately 2,000 points for each case) by the 3-D LDV system.
X